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Chapter 1

Introduction

Speed mad economics of air transportation have been revolutionized by the

introduction of high-performance engines on aircraft systems. Increasing de-

mands on performance have necessitated higher rotational speeds, thinner

airfoils, higher pressure ratios per stage and increased operating tempera-

tures, requiring more optimized designs.

The need to consider several interacting physical disciplines, in addi-

tion to very complex geometries, makes engine design a daunting task. Tra-

ditionally, engine designers have relied heavily on empirical methods based

on past experience and on extensive use of rig and full-scale engine testing.

This approach is not only expensive both in terms of time and financial re-

sources, but also dangerous as a few catastrophic failures have been reported

during test4ng. Also, newer and more novel designs require extrapolation of

empirical results beyond earlier levels of experience, emphasizing the need for

an efficient, economical and reliable analysis system to compliment experi-

mental techaiques and evaluate behavior and performance of aircraft engines

beforehand.

Rapid developments in computational technology both in terms of

high-performance hardware and development of efficient and advanced nu-



merical methods havelead to the application of computational tools to pre-

dict engine performance. Combined with measurementsand experimental

data, these methods provide additional tools for simulation, design, opti-

mization and the cMculation of three dimensional flows in highly complex

geometries. In many instances, computational methods are the only tools

available for simulation, becausethe actual testing of aircraft engineswith

detailed measurementsin rotating passagesis cumbersome,and in many

cases,impossible.

While development of methods to predict aerodynamic behavior of

engineshasreceivedconsiderableattention, it hasbeenonly recently that at-

tempts havebeenmade at performing multidisciplinary analysesof complete

aircraft engine systemstaking into account coupled interaction of multiple

fields.

One particular such interaction is that between the fluid and struc-

tural componentsof the system, generally referred to as fluid-structure in-

teraction or particularly as aeroelasticity for problems involving high-speed

flOWS.

1.i Turbomachinery Aeroelasticity

ClassicaLly [25], aeroelasticity is defined as the study of the effect of

aerodynamic forces on elastic bodies. Pressing demands for improved aero-

dynamic efficiency of engines has resulted in dynamic problems involving

structural integrity, particularly those for the bladed components of the en-

gine. Such problems are generally classified as problems of turbomachinery

aeroelasticity.

Historically [8], it has been noted that engines that incorporated novel

structural or aerodynamic configurations often suffered from flow-induced

2



bladevibrations in service. In many cases,theseproblemscould not be fore-

seenin advance,neither analytically nor during the original developmental

testing. In some cases, persistent flow-induced vibrations ultimately lead to

premature blade failure, both in compressor and turbine stages. Such fail-

ures were usually sudden and catastrophic, as even if only a portion of a

single blade failed on account of flow-induced vibration, the result would be

an instantaneous and total loss of engine power [24].

1.1.1 Types of Blade Vibrations

Aerodynamically induced vibrations are usually classified into two categories,

namely flutter and forced vibration. Each of these will be described next.

1.1.1.1 Flutter

Under some conditions, a blade row operating in a completely uniform flow-

field can get into a self-excited oscillation called flutter. A characteristic of

flutter is that the aerodynamic forces are solely dependent on the structural

motion, which is sustained by the extraction of energy from flow during each

vibratory cycle. The flutter frequency generally corresponds to one of the

lower blade of coupled blade-disk natural frequencies.

Blade failure due to flutter occurs predominantly in the compressor

and fan stages of engines and to a lesser extent in turbine blading. The

outstanding feature of flutter is that very high stresses are generated within

the blades leading to very short-term, high-cycle fatigue failures.

1.1.1.2 Forced Vibrations

Destructive forced vibrations can occur in fan, compressor and turbine blad-

ing when a periodic aerodynamic forcing function, with frequency close to a

system resonant natural frequency, acts on the blades in a given row.



Such forcing functions, which are independent of the vibrational mo-

tions of the structure, are generatedat multiples of the engine rotational

frequency and arise from avariety of sources.For example, aerodynamic dis-

turbances resulting from the presenceof upstream and downstream struts,

stator vanes, and rotor blades,and disturbances becauseof inlet flow non-

uniformities, rotating stall patternsand compressorsurgeoften lead to forced

vibration of blades.

Another important sourceof resonantforced vibration is the aerody-

namic interaction betweenadjacentblade rows. The two principal types of

such interaction are potential flow or static pressure interaction and wake

interaction. The former results from the variations in the velocity potential

or pressurefield associatedwith the bladesof a givenrow and their effect on

the bladesof a neighboring row moving at a different rotational speed. This

type of interaction is of seriousconcern when the axial spacingsbetween

neighboring blade rows are small or flow Mach numbers axe high. Wake

interaction is the effect on the flow through downstream blade rows of the

wakes shed by one or more upstream rows and persists over considerable

distances.

1.1.2 Turbomachinery vs. External Aeroelasticity

While considerable progress has been made in the computational analysis of

aeroelastic phenomena for flows around external bodies, such as wings, wing-

bodies or complete aircraft, that for aircraft engines and turbomachinery did

not gather much momentum until the late 1970s and early 1980s [8]. One of

the reasons for this delay was the complex nature of problems encountered
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in turbomachinery aeroelasticity which are summarized below [56] :

1. Large multiplicity of closely spaced mutually interfering blades, giving

rise to both aerodynamic and structural coupling.

2. Presence of centrifugal loading terms both in the fluid and structural

components.

3. Flow in blade cascades is much more complex than that in external

flow cases on as it may be sub-sonic, sonic or supersonic depending

upon the inlet Mach number and stagger angle giving rise to an intri-

cate Mach reflection pattern.

4. Structural mistuning, which refers to slight differences in mode shapes

or frequencies between the blades and can cause localized mode vi-

brations, in which all the energy in the system is concentrated on one

or two blades leading to blade loss.

5. Aerodynamic mistuning, which refers to differences in blade-to-blade

spacing and pitch angles altering the unsteady flow characteristics in

blade passages.

6. For turbine blades, thermal effects will also have to be considered in

addition to the interaction between fluid and structures.

7. The treatment of boundary conditions for fluid solvers is more com-

plicated for internal flows than for external flows.

8. On account of moving components, structural analysis has to have

geometric non-linearity capability.

1.2 Thesis Outline

The aim of this research is to apply and develop modern computational

tools to simulate and analyze problems in and related to turbomachinery
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aeroelasticity of a aircraft engines. This is seen as a first step in the effort

to perform a fully coupled multidisciplinary analysis of complete propulsion

systems. The central task of current research is to develop a method for

simultaneous computer analysis of rotating and non-rotating components in

turbomachines, such as in the analysis of a rotor stage and a stator stage.

Chapter 2 begins with a description of the state-of-the-art in turbo-

machinery aeroelasticity, paying particular attention to development of flow

solvers to predict aerodynamic behavior and the coupled treatment of fluid

and structural components, highlighting the advantages and drawbacks of

recent attempts.

Chapter 3 starts with an explanation of the partitioned analysis ap-

proach to solving multidisciplinary coupled problems in engineering and out-

lines the application of this methodology to the development of software for

aeroelastic computations. Details of model preparation and preliminary re-

sults obtained from the use of these programs for turbomachinery simulations

is also given.

Chapter 4 describes in detail, the two dimensional fluid solver that is

used in current research.

Chapter 5 leads to the core of the thesis and deals with the simulation

of rotor-stator interaction phenomena in aircraft engines. The problems

encountered in such simulations will be presented followed by a summary

of recent efforts in this direction.

The method developed during the course of this research is explained

in detail in Chapter 6.

Chapter 7 presents results from numerical experiments that were per-

formed to assess the developed method.



Finally, Chapter 8summarizescurrent researchand makesrecommen-

dations for future work.

1.3 Summary

1. Computational methods have been gaining acceptance in design of

aircraft engines , especially with the advent of high-performance hard-

ware and efficient numerical algorithms.

2. While considerable progress has been made in the development of

advanced fluid solvers to predict aerodynamic performance, coupled

treatment of multiple fields has received attention only recently.

3. The interaction between the fluid and structural components in the

bladed regions of the engine is of importance as blades have been

known to fail by either flutter or forced vibrations induced by aero-

dynamic loads.

4. Aeroelastic phenomena for internal flows such as in turbomachinery

are more complex than for those for external flows on account of a

number of reasons, the predominant being increased geometric com-

plexity, mutual interaction between adjacent structural components

and presence of thermal and geometric loading.
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Chapter 2

A Review of Computational Methods for
Turbomachinery Aeroelasticity

This chapter provides an overview ofmethods currentlyemployed to perform

aeroelasticanalysis of aircraftengines. Typically, a system for aeroelastic

analysis consists of two modules, namely a structural analysis module to

determine the structural response to an aerodynamic load and a fluid or

aerodynamic analysismodule which predictsthe unsteady aerodynamic loads

based on the geometric boundary defined by the structure. Each of these

two modules isessentialin any computational setup;however, because of the

complexity of the aerodynamic environment within aircraftengines, hitherto

greater attention has been given to the development of advanced fluidsolvers

than their structural counterparts.

This chapter begins with the requirements for accurate modeling of

fluid beha'_ior and mentions the assumptions and approximations made to

make computer analysismore tractable.Recent developments in the fieldof

computational fluiddynamics (CFD) for turbomachinery applicationswillbe

highlighted. Geometric detailsof blade structuresand theirgeneral behavior

in a rotating environment will be given next, followed by a description of

modeling approximations used in some cases.A summary of research in the

area of turbomachinery aeroelasticitywillconclude the chapter.
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2.1 Aerodynamic Modeling for Turbomachinery Applications

Turbomachinery flows are among the most complex encountered in fluid dy-

namic practice. The characteristics of flow change from region to region

within a single turbomachine. For example, flows may be either laminar,

transitional or turbulent and locally incompressible, sub-sonic, transonic or

supersonic depending upon the location within an aircraft engine [35]. They

are also subject to large pressure gradients in all directions and are subject

to centrifugal forces and thermal effects on account of combustion. The ge-

ometries through which flow occurs are highly complex and simultaneously

include both rotating and non-rotating components. In many cases, treat-

ment of boundary conditions becomes very diffcult and complicated.

Ideally, to capture all effects, a fluid solver would need to solve the

full Navier-Stokes equations with an appropriate turbulence model. How-

ever, in order to reduce the total problem size, usually several simplifying

assumptions are made, depending upon which types of flows are of interest,

mainly to make these problems more amenable to computational solutions.

For example, viscous flows through two dimensional cascades with sub-sonic

attached flow can be most efficiently predicted using inviscid techniques (such

as panel codes or potential codes) coupled with a good boundary layer solver.

A comprehensive review of all the different types of fluid solvers used

in practice and the assumptions made therein would be beyond the scope of

this thesis and the reader is directed to [35] for further details. This section

will review general trends in flow solvers and their assumptions relevant

to aeroelastic applications alone. These can be broadly classified into the

following types :

1. Approximations made in mathematical modeling of fluid, i.e. the gov-
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erning fluid equations.

2. Those made with respect to the three dimensional nature of flow.

3. Assumptions made to reduce the total problem size.

4. Steady-state assumptions.

Each of these assumptions are further clarified below.

2.1.1 Simplified Flow Models

As reported earlier, a Navier-Stokes solver with an appropriate turbulence

model would be ideal to capture complete flow physics. However, to re-

duce storage and computational cost, the governing differential equations

are approximated depending upon the type of application and the resolution

desired. Some of these approximations are as follows :

1. Inviscid flow : In these approximations, the viscous terms are ne-

glected completely and the resulting equations are solved using any

of the following techniques :

a. panel method (incompressible, irrotational, two dimensional

flow)

b. potential equation (irrotational, two dimensional or three di-

mensional flow)

c. stream function equation (two dimensional flow)

d. Euler equations (two dimensional and three dimensional flow)

2. Boundary layer approximations : When the viscous layers are thin

compared to the blade spacing, the streamwise diffusion terms are

neglected. The pressure field is assumed to be imposed by the inviscid

layer and is prescribed from an inviscid analysis.
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3. Parabolized Navier-Stokes equations : This assumption is similar to

the boundary layer assumption above except that it allows for normal

and transverse pressure gradients. The streamwise pressure gradient

is obtained from an inviscid analysis and is continuously updated to

capture flow physics correctly.

4. Thin Layer or Reduced Navier-Stokes equations : In this, the stream-

wise diffusive term is neglected. This is valid only when the viscous

layers are thin and is useful when the computational grids are too

coarse to resolve the streamwise diffusion terms.

5. Zonal techniques : Zonal techniques enable the use of different ap-

proximations in different regions of the engine and their linkage gives

a global flow field.

For aeroelastic analysis there is a general consensus that viscous ef-

fects can be neglected except in stall and choke flutter [8]. Thus a three

dimensional Euler solver would su_ce. However, there is no general agree-

ment on the ability of various formulations to capture the important features

and stability characteristics of a given problem. Again, some assumptions

are made to simplify the solution. These include :

1. Linearized Potential Flow : Two different classes of linearized un-

steady cascade theories have been developed :

a. Theories that linearize about a uniform mean flow.

b. Theories that linearize about a non-uniform, deflected mean

flOW.

Of course, all these theories make the fundamental assumption

that the flow is inviscid and of a perfect gas with no shocks. Bendik-
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sen [8] has reviewed a large number of such flow solvers and these will

not be repeated here.

2. Non-linear Flow Models : Some calculations of flow around cascades

with non-linear potential models were reported in the early 1970s.

However, these were rare and met with limited success. Nowadays,

with great advances being made both in the development of numerical

algorithms and availabihty of powerful computing platforms, both

Euler and Navier-Stokes solvers have become quite common and have

been reported in significant numbers, for example [14, 15, 19, 27, 32]

to name a few.

2.1.2 Assumptions Made with respect to the Three Dimensional
Nature of Flow

It should be noted that flow through turbine, compressor and fan rotors is

inherently unsteady and three dimensional in nature. For example, large fan

rotors have a velocity gradient from the hub, where the flow is sub-sonic, to

the tip, where flow is supersonic as a result of blade rotation [9]. This, in

addition to the variation of Coriolis forces in the radial direction gives rise to

a very complex shock structure from hub to tip. Thus, in order to capture

the true nature of flow, a fully three dimensional model is required.

However, on account of limitations in computing power, early re-

searchers used simplified two-dimensional cascade models for flow compu-

tations. These models yielded sufficiently good results, in fact, to quote

Bendiksen [8], "... it is surprising that [two dimensional] cascade theories

have been successful in 'explaining' -- if not exactly predicting -- the occur-

rence of flutter in supersonic fans ..."

While some purely two dimensional computations were carried out,

more advanced flow solvers were developed based on a theory proposed by
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Wu [68] in 1952. In Wu's model, the flow is assumedto follow an axisym-

metric streaznsurface. The radius and thickness of this streamsurface are

assumedto be known as a function of streamwisedistance. These quanti-

ties are usually obtained from an axisymmetric throughflow or meridional

analysis. The equations governingthe flow along the streamsurfacecombine

the axial and radial components into one streamwise component and are

thus two dimensional. The true three dimensional characteristicsof flow can

be extracted from this two dimensional approximation as the shapeof the

streamsurfaceis known. Specificationof the streamsurfaceallows modeling

of bladeswith variable heightsand thicknesses,unlike that for the purely two

dimensionalsolverswhich had problemsmodeling bladesof arbitrary shapes.

As this approachusestwo dimensionalanalysisto capture three dimensional

phenomena,it is called "quasi three dimensional" and is common to many

turbomachinery analysis programs.

2.1.3 Assumptions Made to Reduce the Total Problem Size

This assumption is common to many aeroelastic and fluid solvers of all types.

For non-aeroelastic fluid solvers, it is obvious that flow through all interblade

passages will be identical on account of similarity in geometry. Based on an

interesting proposition of Lane [36] in 1957, even aeroelastic analyses, in

which there is a change in geometry for each blade passage, can also be

performed considering only one or a few interblade passages. This is highly

beneficial as the total problem size is reduced by an order of magnitude.

Lane observed that at flutter, adjacent blades vibrate approximately

180 degrees out of phase with respect to each other. He considered the

possible flutter mode shapes of a perfect rotor with identical blades and
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showed that the flutter mode shapes are remarkably simple : each blade

vibrates with identical modal amplitudes but with a constant phase angle a

between adjacent blades. For a rotor with N blades, the possible interblade

phase angles are given by :

an = 2r:n /N, n = O, 1,2,. . . ,N -1

Thus the flutter mode is a traveling wave with respect to the rotor. This

simple structure of the flutter mode is a direct consequence of the periodicity

of cyclic symmetry in geometry which leads to important cyclic properties

for both the structure and fluid. From a computational standpoint, Lane's

Theorem, which assumes linear structural behavior, allows a full blade row

of N blades to be modeled using only a single blade or a few blades.

2.1.4 Time-Accuracy Assumptions

This is an assumption only when a fluid solver is used for aeroelastic anal-

ysis. Aeroelasticity is truly an unsteady phenomenon, yet at times, some

researchers employed steady-state flow solvers for aeroelastic analysis. This

is done by obtaining steady-state solutions from a flow solver and using that

to perform a 'static' aeroelastic analysis.

2.1.5 Development of Advanced Flow Solvers

This is to give a very brief overview of the state-of-the-art in CFD for tur-

bomachinery applications.

Keeping in phase with the development of CFD tools for external

flows, commendable progress has been made in the development of advanced

flow solvers for turbomachinery. Particular emphasis has been laid to de-

velop sophisticated analysis methods to deal with the complex geometries of
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aircraft engines,difficulties arising out of that and the modeling of effects

that other disciplines haveon fluid flow.

In order to obtain fast steady-state flow solutions through complex

aircraft enginegeometries,advancedsolversaredevelopedto reducethe large

diversity between the length and time scMesof flow. Prominent amongst

these is the work of Adamczyk [2, 16] who usesadvancedaveragedmodels

to compute flow in multistage turbomachinery. Three averaging operators

are developed.The first averagingoperator, namely the ensembleaverage,is

introduced to eliminate the needto resolvethe detailed turbulent structure

of flow. The second operator is used for time-averaging and allows fast

computation of steady flows. The last operator, namely the passage-to-

passageaveragingoperator allows simultaneoussimulation of flows through

blade-rowshaving variable number of bladesand/or rotating speeds.Details

of theseoperators are lengthy and complex and will not be dealt with here.

The reader is referred to [2] for the full mathematical formulation.

With growing interest in treating aircraft engineson a more unified

basis, particular emphasis is laid on modeling interdisciplinary interaction

betweenfluid and other components.Stewart [61] hasdevelopeda program

ENGI0which takes into account the effect of blade forces, loss, combustor,

heat addition, blockage,bleeds and convective mixing. This program, in

the writer's opinion, representsthe true state-of-the-art in turbomachinery

flow solvers and can be viewed as an efficient synthesis of existing models

for multidisciplinary interaction. An approach similar to that of Adamczyk

is used, in which the right-hand sides of Euler equations include averaged

terms for blade forces, combustorand other effectsmentioned above.

Other notable works in this area are those of Koya and Kotake [32]

and Gerolymos [27, 28]. Of theseKoya and Kotake are credited the first
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truly three dimensional time-dependentEuler calculation for flow through a

turbine stage. Gerolymoshasdevelopedadvancedmethods for investigation

of flutter in vibrating cascades,employing assumptionsmade about linear

structure behavior and spatial periodicity.

2.2 Structural Modeling and Solvers

While not as complex or involved as modeling the fluid behavior, modeling

of blades of a turbomachine requires particular attention on account of the

presence of a rotating environment and geometric details. As in the case

of aerodynamic modeling, several assumptions are made in the structural

modeling of engines. This section will first review the modeling requirements

and then mention the approximations made and recent advances in this area.

2.2.1 Requirements for Modeling Turbomachine Blades

Before explaining the requirements for accurate modeling of turbomachinery

blades, it is worthwhile to consider how blades are mounted in a turboma-

chine and their general behavior in a rotating environment.

Figure 2.1 : A Typical Shrouded Fan Blade
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Figure 2.2 : Typical Blade Cross-Section

Typically, a blade is attached to a circular disk by a dovetail joint,

as seenin Figure 2.i from [40]. Usually a single stageof a turbomachine

comprisesof 30-40 blades attached circumferentially on the periphery of a

disk. The disk and its attached blades rotate at a large angular velocity

about an axis perpendicular to the plane of the disk. On account of the

centrifugal forces the blade experiences, there is a small, but significant,

amount of blade untwisting. This causes the shrouds of the adjacent blades

to lock resulting in an added stiffness for each individual blade.

Blade geometries by themselves are from simple and vary greatly from

hub to tip both in terms of thickness and cross-sectional profile. Figure 2.2

shows a highly twisted, actual turbine blade, with cross-sections taken at the

root, the free end and midway along the blade [40].

In addition to the changes in blade geometry because of centrifugal

loading as mentioned above, blades undergo large vibrational motion on ac-

count of aerodynamic loads imposed by the fluid.

With this background, the following requirements can be identified
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for structural analysis of turbomachinery blades :

1. The structural analysis program should capable of handling centrifu-

gal loads.

2. Non-linear geometric effects should be included to be able to trace

changes in blade geometry on account of centrifugal loading and vi-

brations on account of aerodynamic loads.

3. Another geometric feature required would be the capacity of handle

contact problems such as the locking of shrouds and their effect on

overall structural stiffness.

4. Thermal effects will need to be considered in turbine blacking.

2.2.2 Modeling Assumptions and Approximations

Several assumptions are made with regard to the aeroelastic behavior of

blades in a turbomachine which leads to a few approximations as outlined

below.

Primary among these is the use of only a few blades to model an

entire stage, in accordance with Lane's theorem. This restricts the use of

these models only to linear analysis.

Another historical trend is the use of a single torsional degree-of-

freedom to model a blade in 2-dimensions. The idea that turbomachin-

cry aeroelasticity is a single degree-of-freedom phenomenon appears to have

taken root from the very beginning of interest in this subject [8]. This

stemmed from the observation that flutter in blacking does not occur by

the coalescence of bending and torsional modes but by the adjustment of

modal amplitudes and phase angles so as to extract energy from the fluid,

usually in the torsional mode. Thus to capture flutter correctly, using only
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a torsional degree-of-freedom in two dimensional studies was thought to be

sufficient.

However, in reality, as adjacent blades are not in phase with each

other, the flutter mode is a traveling wave and it would be possible for the

bending mode to alter the extraction of energy from the fluid. Thus, even

though flutter may not occur by the coalescence of bending and torsional

modes, both bending and torsional modes need to be modeled to investigate

the possibility of flutter. The simplest models should (and did) therefore

have both bending and torsional degrees-of-freedom.

The next level of modeling approximation was the use of beam models

for blades [8, 56}. In this, blades are modeled as straight, slender, twisted

elastic bearns with a symmetric varying cross-section. Blades are assumed

to be rigid in the radially, thus eliminating the equation of motion in that

direction. The degrees-of-freedom in this case consist of (a) bending in the

plane of rotation, (b) bending in the plane perpendicular to the plane of

rotation and (c) a torsional degree-of-freedom about the elastic axis of the

beam. This model was based on the geometric non-linear theory of elasticity

and gave rise to a set of coupled, but linear, equations of motion. The

beam model is adequate only when the blade is relatively thick and has a.

large aspect ratio. If this is not the case, then beam models are found to

be inadequate to capture chordwise bending modes and a two dimensional

model is called for [40].

The cross-sections of blades vary greatly from the hub to the tip and

hence means have to be found by which they can be modeled in 2-dimensions

using what are called equivalent sections in which changes in the spanwise

direction are accounted for in an average sense.
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More recently, with the development in finite element technology for

structural analysis, elaborate finite element models have been used, which

take into account geometric non-linear effects on account of large displace-

ments of the blades. However, developing an accurate model of engine blades

with complete details such as shrouds remains a challenge even in the age of

advanced finite element solvers.

2.2.3 Development of Structural Solvers

The development of structure solvers for aircraft engine applications has not

been much different from that for any other structural analyses. In fact,

Reddy et al [56] mention that most of the structural calculations at NASA

LeRC have been performed using NASTRAN.

Some specific stand-alone programs, especially those which take into

account thermal and other effects such as bird and ice impacts and also the

effects of composites used have also been used for blade analysis though not

directly coupled with a fluid solver for aeroelastic analyses [55].

2.3 Summary of Aeroelastic Analysis Programs for

Turbomachinery

Some of the assumptions made for aeroelastic analysis of turbomachinery

have been mentioned above. The following is a concise summary of research

in turbomachinery aeroelasticity till now [6, 56, 59] :

1. Use of potential or Euler solvers with simplifying assumptions.

2. Purely two dimensional, quasi three dimensional or axisymmetric fluid

solvers.

3. Only one or a few blades are modeled.

4. To compute structural response, linear structural behavior is assumed.

This makes it possible to use quicker frequency domain analysis.
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5. Very often, it is found that only static structure response is'considered,

neglecting inertia effects, even when the method of analysis is for

unsteady analysis.

6. For cases in which inertia effects are considered, a very simplified

structural model is used, with as few as 2 DOFs.

7. Even though aeroelasticity is an unsteady phenomenon, steady-state

methods are used to compute fluid flow and structure loads are com-

puted at each time step from this steady state solution. As time-

accuracy of fluid solvers is sacrificed in order to obtain a fast steady-

state solution, this may not yield correct results.

8. Transfer of loads between fluid and structure is done through lift

coefficients, thus losing spatial accuracy in computing structural loads.

9. Some fluid solvers use moving meshes for analyzing vibrating blades.

Exact details of algorithms for mesh updating are not given and it is

probable that these algorithms do not satisfy the geometric conserva-

tion law, which will be discussed later (Section 4.1.4).

2.4 Summary

1, Problems in interior aeroelasticity are more difficult to analyze than

those in exterior aeroelasticity. Consequently, a number of simplify-

ing assumptions are made in order to make computational treatment

possible. On account of the more complex behavior of fluids within

turbomachinery than structural behavior, till now greater attention

has been paid to development of flow models and flow solvers than

their structural counterparts.

21



2. To simplify the processof flowsolution, approximations aremadeboth

at the level of physicalmodeling (two dimensionalinstead of three di-

mensional, a singleor a fewbladesinstead of a complete cascade)and

mathematical modeling (linearizedand potential equations instead of

complete Navier-Stokesor Euler calculations). More recently, efficient

and advancedflow solvershave beendeveloped.

3. Likewise, approximationsarealsomadein structural modeling. These

include restriction to the caseof linear behavior making frequency

domain analysispossibleand the useof simplified models (beamsand

equivalent sectionsinsteadof completeblades). Useof advancedfinite

element structural solvershaveresulted in more realistic simulations.

4. In many cases,details of coupling between the structure and fluid

componentshavenot beengiven which could result in discrepancies.

5. A complete system for aeroelastic analysis of aircraft engines with-

out assumptionsother than those in the processof discretization still

remains to be developed.
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Chapter 3

Partitioned Analysis Procedures for the Aeroelastic
Problem

This chapter deals with the formulation of coupled field problems for aeroe-

lasticity and their solution using the partitioned analysis approach. It begins

by introducing the concept of partitioned analysis and the motivation behind

this methodology. Use of partitioned analysis for aeroelastic applications

will be mentioned and elaborated upon. The individual software compo-

nents used for solving the coupled field aeroelastic problem will be briefly

overviewed. Lastly, a brief description of initial attempts at using existing

technology for external aeroelasticity for internal aeroelasticity applications

will be given.

3.1 Partitioned Analysis for Coupled Field Problems

Many current problems in engineering require the integrated treatment of

multiple interacting fields. These include, for example, fluid-structure in-

teraction for submerged structures and in pressure vessels and piping, soil-

water-structure interaction in geotechnical and earthquake engineering, ther-

mal-structure-electromagnetic interaction in semi- and superconductors and

fluid-structure interaction (FSI) in aerospace structures and turbomachinery,

the last of which is the focus of attention for current research.
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Nowadays, sophisticated and advanced analysis tools are available for

individual field analysis. For example, for FSI, advances in the last few

decades have resulted in the development of powerful and efficient flow ana-

lyzers, which is the realm of interest of computational fluid dynamics (CFD).

Equally robust structural analysis tools are available, which is a result of de-

velopment of advanced finite element methods (FEM). Computer analysis

of coupled field problems is a relative newcomer and no standard analysis

methodology has been estabhshed. One natural alternative is to tailor an

existing single-field analysis program to take into account multidisciplinary

effects. As an example, fluid volume elements could be added to a FEM

structure solver. Another approach would be to unify the interacting fields

at the level of governing equations and formulate analysis methods there-

upon, for example, as suggested by Sutjajho and Chamis [62].

Both these methods suffer from drawbacks. From a programming

point-of-view, addition of modules of different fields leads to an uncontrolled

growth in complexity of necessary software. It becomes increasingly difficult

to modify existing codes to incorporate improved formulations. For users, a

monolithic code can impose unnecessary restrictions in modeling and mesh

generation. For example, in FSI, forcing equal mesh refinement on the fluid-

structure interface may either cause the structure elements to be too small,

making analysis more expensive, or cause fluid cells to be too large, resulting

in a loss of accuracy or stability or both.

Partitioned analysis [48] offers an attractive approach in which diverse

interacting fields are processed by separate field analyzers. The solution of

the coupled system is obtained by executing these field analyzers, either in
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sequential or parallel manner, periodically exchanginginformation at syn-

chronization times. This approach retains modularity of software and sim-

plifies development. It also allows to exploit well established discretization

and solution methods in each discipline and does not enforce any specific

mesh refinement requirements.

3.2 Mathematical Model for Aeroelasticity

Aeroelasticity deals with the interaction of high speed flows with flexible

structures. Thus, in a physical sense, it is a two-field phenomenon. The first

field is the structure, for example, the blades of a turbomachine or an entire

aircraft, and the second is the fluid flowing around the structure. During

coupled interaction, the structure defines the geometric boundary for flow

while the aerodynamic load imposed by the fluid on the structure initiates

and sustains the structural response. The goal of computational aeroelas-

ticity is to predict or analyze this two-way coupling. Different treatments

required for each field pose a challenge for coupled field analysis.

3.2.1 Field Equations

This section introduces the governing differential equations used to describe

the structural and fluid components in aeroelastic analysis.

3.2.1.1 Structural Equations

The structure is governed by equations from classical theory of elasticity :

div(_(e)) + b = -pfi (3.1)

where _r is the stress tensor and e is the strain tensor which is function of

structural displacements, b represents body forces (such as gravity) acting

on the structure and u denotes structural displacement.
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3.2.1.2 Fluid Equations

Asmentioned in Section2.1, ideally, the fluid field should be described by the

Navier-Stokes equations. However, in this research, only the Euler equations

are considered. The primary reason for this is to speed-up computations and

the methods developed can be extended for Navier-Stokes or even turbulence

computations. Furthermore, there is a consensus amongst researchers in this

area (Section 2.1.1) that for aeroelastic analysis involving turbomachinery,

Euler equations suffice. These are written in 3-dimensions as follows :

0 .
-_W(z,t) + V. :F (W(_,t)) = 0 (3.2)

where _ and t denote the spatial and temporal variables, and

(0 0w = (p.pO.E)r, V = _' _' 5z

and

Fx(w)= F,(W) ]
F.(W)/

where F_(W), Fv(W ) and Fz(W) denote the convective fluxes in the x, y

and z directions respectively and are given by :

pu 2 + p ( puw

Fx(W)= | p_v . F_(w)= | pv_+p f.(W) = I pvw
I puw | pvw |pw 2+p
\u(E + v) \_(E + p) \w(E + V)

In the above expressions, p is the density, 0 = (u, v, w) is the velocity vector,

E is the total energy per unit volume and p is the pressure. The velocity,

energy and pressure are related by the equation of state for a perfect gas :

where 7 is the ratio of specific heats, 7 = 1.4 for air.
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For aeroelasticcomputations, the flow boundary is defined by the structure

(Fb) and inflow and outflow boundaries (FI/o). Thus

F = Fb U FIlo

Let _ denote the outward normal at any point of F. Then, the no-slip con-

dition (i.e., no flow normal to the boundary ) at the fluid-structure interface

is given by

0.g=0

At the same boundary, on the structural partition, the boundary condition

is given by

a. =

which prescribes the load on the structure imposed by the fluid pressure.

The flow is assumed to be uniform at the inflow and outflow bound-

aries and is thus prescribed. The free-stream state vector Woo is given by

1

poo - 1, 000 - (uoo, voo,woo) with 110_¢11- 1, poo -- .rMi

where Moo denotes the free-stream Mach number. The velocity components

uoo, voo and woo are obtained from the angle of attack and the yaw angle.
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3.2.2 Discretization of the Field Equations

This section briefly overviews methods used to discretize the field equations

described in Section 3.2.1.

3.2.2.1 Structural Equations

The finite element method (FEM) has become more or less the standard to

discretize structural equations. Neglecting damping, the discretized struc-

tural equations are written as :

M_ + Kq = f_,t

or

M_i + fint(q) = f,,t

In the above equations, M is the mass matrix, K is the stiffness matrix, q

are the structural degrees-of-freedom and f_,t are the external apphed loads.

In the second of the above equations, the term fint(q) represents the vector

of internal forces within the structure which includes the elastic forces Kq

and could also include other forces such as those due to damping.

3.2.2.2 Fluid Equations

Numerous methods are popular for the discretization, mainly the finite-

difference (FD), finite-volume (FV) and finite element (FE) methods. In the

current approach, the finite-volume discretization is adopted to discretize the

convective fluxes. Details of this process are omitted at present but will be

explained in Chapter 4.
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3.3 Partitioned Analysis for Aeroelastic Applications

Aeroelasticity deals with the interaction of high-speed flows with flexible

structures. Thus, in a physical sense, it is a two-field phenomenon. However,

on account of different formulation methods used for the fluid and structure

components, computationally, it becomes more convenient to treat this as a

three-field coupled problem.

3.3.1 Aeroelasticity as a Three-Field Coupled Problem

Traditionally, structural equations axe formulated in Lagrangian co-ordinates,

in which the mesh is embedded in the material and moves with it; while the

fluid equations are typically written using Eulerian co-ordinates, in which

the mesh is treated as a fixed reference through which the fluid moves.

Therefore, in order to apply the partitioned analysis approach in

which the fluid and the structure components axe treated separately, it be-

comes essential to move at each time step, at least the portions of the fluid

mesh that axe close to the moving structure. One of the approaches which

obviates the need for partial remeshing of the fluid mesh is one where the

moving fluid mesh is modeled as a pseudo-structural system with its own dy-

naxnics. Thus, the physical two-field aeroelastic problem can be computation-

ally formulated as three-field system, comprising of the fluid, the structure

and the dynamic mesh. This is the Adaptive Lagrangian-Eulerian (ALE)

[17, 41] formulation. The semi-discrete equations governing this three-way

coupled problem can be written as follows :
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0 FC
(A(x,t)w(t)) + (w(t),x,x) = R (w(Q) (3.3a)

02q fex,
M_- + fint(q) = (w(t),x) (3.3b)

02x - 0x

1VI-_- + D_- + I£x = Kcq (3.3c)

where t designates time, x is the position of a moving fluid node, w is the fluid

state vector, A results from the finite-element/finite-volume discretization of

the fluid equations, F c is the vector of convective ALE fluxes, R is the vector

of diffusive fluxes, q is the structural displacement vector, fint denotes the

vector of internal forces in the structure, fe=: the vector of external forces, M

is the finite element mass matrix of the structure, 1_I, D and I_ are fictitious

mass, damping and stiffness matrices associated with the moving fluid mesh

and Kc is a transfer matrix that describes the action of the motion of the

structural side of the fluid-structure interface on the dynamic fluid mesh.

For example, IVI = D = 0 and I_ = I_ n where I£2 is a rotation matrix

corresponds to a rigid mesh motion of the fluid mesh around an oscillating

structure, while 1VI = I) = 0 includes the spring-based mesh updating scheme

proposed by Batina [7] and Tezduyar et al [63].

It should be noted that the three components of the coupled field sys-

tem described in (3.3) exhibit different mathematical and numerical prop-

erties and hence require different computational treatments. For Euler and

Navier-Stokes flows, the fluid equations axe non-linear. The structural equa-

tions may be either linear or non-linear depending upon the type of applica-

tion. The fluid and structure interact only at their interface, via the pressure

and motion of the structural interface. However, the pressure variable can-

not be easily isolated from the fluid equations or the fluid state vector w,

making the coupling in this three-field problem implicit rather than explicit.
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Figure 3.1 : Interaction between Programs for FSI

The simplest possible partitioned analysis procedure for transient ae-

roelastic analysis is as follows :

• Advance the structural system under a given pressure load.

• Update the fluid mesh according to the movement of the fluid struc-

ture interface.

• Advance the fluid system and compute the new pressure load.

This procedure is carried out in cyclic order until the desired end of compu-

tations is reached, see Figure 3.1.

3.3.2 Geometric Conservation Law

An interestingfeature that arisesout of the use of the three-fieldALE for-

mulation is the need to take into consideration the motion of fluid volume

cellswhile computing fluxesin the fluid solver. It is shown in [64]that in

order to compute flows correctlyon a dynamic mesh, itisessentialthat the
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selected algorithm preserves the trivial solution of an uniform flow-field even

when the underlying mesh is undergoing arbitrary motions. The necessary

condition for the flow solver to accomplish this is referred to in literature as

the Geometric Conservation Law (GCL). F_ilure to satisfy the GCL results

in spurious oscillations although the system for which solution is sought is

physically stable. Further details about GCL and its current implementation

will be given in Section 4.1.4.

3.4 The PARFSI System for Unsteady Aeroelastic Computations

A system of locally developed programs for unsteady aeroelastic computa-

tions, PARFSI (Parallel Fluid-Structure Interaction) will be described next.

This system consists of a fluid solver, a structure solver, a dynamic ALE

mesh solver and a few preprocessing programs for parallel computations.

3.4.1 Fluid Solver

For flow computations, a three dimensional fluid solver for unstructured dy-

namic meshes is used. This discretizes the conservative form of the Navier-

Stokes equations using a mixed finite-element/finite-volume (FE/FV) me-

thod. Convective fluxes are computed using Roe's [57] upwind scheme and

a Galerkin centered approximation is used for viscous fluxes. Higher or-

der accuracy is achieved through the use of a piecewise linear interpolation

method that follows the principle of MUSCL (Monotonic Upwind Scheme

for Scalar Conservation Law) proposed by Van Leer [66]. Time integration

cwn be performed either explicitly using a 3-step variant of the Runge-Kutta

method, or implicitly, using a linearized implicit formulation. An elaborate

description of the three dimensional fluid solver can be found in [37].
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3.4.2 Structure Solver

A parallel structural analysis program, PARFEM has been developed by Farhat

and co-workers over the last few years. This program has a wide range of

one-dimensional to three-dimensional finite elements for structural analysis.

Time-integration is implicit based on Newmark's method [26]. For paral-

lelization, the FETI (Finite Element Tearing and Interconnecting) [20, 21]

domain-decomposition method is used.

3.4.3 ALE Mesh Solver

The fluid mesh is assumed to be a network of springs based on a method

proposed by Batina [7]. The solver used to update the fluid mesh is inte-

grated into the fluid code as a subroutine which is called every time there is

an exchange of information between the structure and fluid. At each time

step t n+l, displacements at the interior nodes are predicted by extrapolat-

ing the previous displacements at time steps t n and t '_-1 . Nodes on the

far-field boundaries are held fixed, while the motion of fluid nodes on the

fluid-structure interface is obtained by interpolation of structural displace-

ments.

3.4.4 Matching Non-conforming Fluid and Structure Meshes

Two preprocessing programs have been developed to enable parallel aero-

elastic computations. To decompose the fluid and structure meshes, a mesh

decomposition software TOP-D01_EC [23] is used. This is equipped with a

range of mesh decomposition algorithms and can also be used as a visualiza-

tion tool.

As fluid and structure computations are performed by independent

programs adhering to the partitioned analysis methodology, the fluid and
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structure meshesneed not coincide along their interfaces. Hence an inter-

polation procedure is followed to transfer pressuresfrom the fluid to the

structure and displacementsfrom the structure to the fluid. Interpolation

information (in terms of interpolation coefficients within elements and asso-

ciation of fluid/structure nodes/elements across the fluid structure interface)

necessary for parallel execution of solvers is set up by a preprocessing pro-

gram MATCHER, described in [45].

3.4.5 Subcycling between Fluid and Structure Solvers

The fluid and structure meshes may have varied degrees of refinement and

will hence have different time steps. Subcycling [50] allows the fluid and

structure solvers to run concurrently with different time steps by periodic

exchange of information at synchronization times. This also makes structural

computations more efficient as usually the implicit structure time step is an

order of magnitude higher than the explicit fluid time step.

3.5 Application of PARFSI for Turbomachinery Simulations

As a beginning, the existing programs for aeroelastic analysis were used to

simulate the aeroelastic response for the blades of the GE-EEE fan stage

[30]. Disregarding modifications made to some pre- and post-processing pro-

grams, no major modifications were required for any of the field analyzers

in computing the response to internal flow using codes primarily designed

for external aeroelastic computations. This highlights a major benefit of

adopting the partitioned analysis methodology.
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Figure 3.2 : Fluid and Structure Meshesfor the GE-EEE Fan Stage

3.5.1 Model Preparation

Two physical models have beenusedin the aeroelasticsimulations.

1. The first model is a single row of bladesfrom the compressionstage

of the GE-EEE turbofan engine,which servesas a test casefor most

computational methods at NASA LeRC. This model consists of 32

blades along the circumference. Details of blade geometry were ob-

tained from a NASTRAN FE model. This model has approximately

60,000 fluid nodes and 1,600 structure nodes. For parallel analysis,

the fluid mesh was decomposed into 32 subdomains and the structure

mesh into 4 subdomains.

2. The second test model was a hypothetical two-row stage which was

obtained by using the GE-EEE model mentioned above, setback along
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the longitudinal axis of the engineand half-way shifting it in the cir-

cumferential direction. In this case,the fluid mesh consistedof ap-

proximately 45,000nodesand the structure meshhas approximately

3,200nodes. For parallel analysis, 16sub-domainswere used for the

fluid and 4 for the structure.

The fluid meshwasgeneratedby first constructing a mesh for a typ-

ical cell block which was the passagebetween two blades. A hexahedral

meshwasobtained in the interblade passageby algebraic interpolation and

tetrahedra were generated by dividing eachindividual hexahedron into six

tetrahedra. The structure meshwas composedof triangular shell elements

having uniform thicknessfor the sakeof simplicity.

Once the structure mesh for a single blade and the fluid mesh for

a single interblade passagewere obtained, models for the entire stagewere

easily constructed by rotating thesearound the circumference.

Wireframe plots of the fluid and structure meshesgeneratedfor each

of the abovecasesare shownin Figures 3.2 and 3.3.

3.5.2 Results

It was observed that the blades tend to vibrate in phasewith similar am-

plitudes. A slight coupling effect was observedbetween the bending and

torsional modes of vibration for the blades.

Results for the two-row casewere more interesting. The first row

appeared to act as a screenand absorbed most of the impact of the aero-

dynamic load. This causedit to vibrate with a much greater frequency and

amplitude than the secondrow. Again, somebending-torsion coupling was

observedin blade vibrations.
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Figure 3.3 : Fluid and Structure Meshesfor the Hypothetical 2-Row

Stage

3.5.3 Comparison of Current Approach with Other Methods

It is felt that the current approach to turbomackinery aeroelasticity offers

the following advantages over other methods :

1. No approximations or assumptions are made regarding either of the

structural or fluid components except those in the discretization of

the governing equations.

2. Independent modeling of the fluid and the structure allows the use

of arbitrary computational procedures for each field without affecting

the other. Meshes can be refined independently without having to

take into consideration conformity at the fluid-structure interface.

3. Additional field analyzers can be added without greatly increasing the

programming complexity of existing software.
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4. The use of massively parallel computations allows a fast turn-around

which is of great importance in the design process.

3.5.4 Shortcomings

While the use of the PARFSI for turbomachinery aeroelasticity demonstrates

the advantages of the partitioned analysis approach and massively parallel

computations, several enhancements are required to make the system more

applicable to problems of this type :

1. Addition of centrifugal loading and geometric non-linearity capability

to the structure solver.

2. Addition of viscous and turbulence effects to the fluid code and the

ability to handle differential rotations between rotating and non-rot-

ating components of an engine such as that between a rotor and a

stator.

3. Addition of thermal effects.

3.6 Summary

1. Multidisciplinary problems often need to be solved in modern engi-

neering. This involves the simultaneous solution of single field prob-

lems for each individual field and the interaction between multiple

fields. The partitioned analysis approach allows the analyst to divide

and conquer by eliminating unnecessary overheads and restrictions in

both software development and physical modeling.

2. Governing equations for the structural and fluid fields need to be

considered in a computational treatment of aeroelasticity. However,
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on account of a discrepancy'in which these equations are formulated, a

third fictitious field is introduced as a bridge between the Lagrangian

description for the structure and the Eulerian description for the fluid.

3. An advanced, massively parallel system based on the partitioned anal-

ysis approach has been developed at the Center for Aerospace Struc-

tures for computational simulation of external aeroelasticity problems.

4. Satisfactory results were obtained by applying this system to simu-

late the aeroelastic response of a single and multirow fan stage of an

aircraft engine.

5. While the current technology can be used to a limited extent to per-

form analyses of these types, several enhancements are required for

more realistic simulations.
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ChapteI' 4

Euler Flow Computations on Two-Dimensional
Unstructured Meshes

Preliminary results from fully three dimensional simulations of aeroelasticity

phenomena in turbomachinery were presented in Chapter 3. As mentioned

in that chapter, there are several issues that need to be addressed to make

the current computational setup capable of handling more realistic cases

typically found in aircraft engines. One identified requirement was the need

to allow mutual slipping between meshes associated with different parts of a

turbomachine, such as those employed in the analysis of interaction between

adjacent rotating and non-rotating components.

This chapter gives a description of a two dimensional Euler solver

for unstructured meshes, paying close attention specially to the spatial dis-

cretization" using the finite-volume method.

4.1 A Finite-Volume Approach to Euler Calculations on

Unstructured Meshes

A two dimensional Navier-Stokes [22, 38] solver using a mixed finite ele-

ment/finite volume formulation on unstructured triangular meshes is de-

scribed here. For the case under study, namely discontinuous unstructured

meshes, the viscous terms have been neglected because they are relatively
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unimportant in turbomachinery applications, particularly so in aeroelasticity

[8]. Consequently,a description of the finite-element discretization of viscous

terms will be omitted for brevity.

4.1.1 Governing Equations

Let f/(t) C /R 2 be the flow domain of interest and F(t) be its moving and

deforming boundary.

A mapping function is introduced between the configuration at time

t, fl(t) in which time is denoted by t and the mesh point co-ordinates by _,

and a reference configuration f2(0) in which time is denoted by 7- and the

mesh point co-ordinates by (.

_= _(_,_); t=_- (4.1)

The non-dimensional conservative form of the ELder equation in an ALE

formulation (Section 3.3) can be written as

where

_c _w

in which _" and t denote the spatial and temporal variables, and W is the

state vector given by

(00) w = (p,p_,pv, E) r, V = _ Yv

The flux vector is

f = (F(w)
\ v(w) )
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where F(W) and G(W) denote the convective fluxes given by

F(W) = P_ + v C(W) =
I ;uv ' | pv _-+ p

\ _,(E+ v) \ v(E + p)

In the above expressions, J = det(d_/d() is the Jacobian of the frame

transformation £ --+ (, _ = (0£/0r)_ is the ALE mesh velocity, p is the

density, U -- (u, v) is the velocity vector, E is the total energy per unit

volume and p is the pressure.

The velocity, energy and pressure are related by the equation of state

for a perfect gas

1 -.

P= (V-1) (E- _p[[U[] 2)

where V is the ratio of specific heats, 7 = 1.4 for air.

4.1.2 Boundary Conditions

Three types of boundary conditions can be specified :

1. Inflow boundary conditions : These are specified at the inlet for in-

ternal flow calculations.

2. Outflow boundary conditions : These are specified at the exit for

internal flow calculations.

3. Slip boundary conditions : These are no through-flow boundary con-

ditions imposed weakly at fixed walls.

The location of these boundary conditions define the limits of the computa-

tional flow domain.
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4.1.3 Spatial Discretization

There are two inherently linked aspects to the finite-volume spatial discretiza-

tion :

1. The geometrical discretization of" the computational domain by a fluid-

volume unstructured triangular mesh and

2. The numerical discretization of the Euler equations on the fluid-volume

mesh.

4.1.3.1 Geometrical Discretization

At any time t, the flow domain fl is assumed to be a polygonal bounded

region of IR 2. Let 7_ be a standard triangulation of f/ and h the maximal

length of the edges of 7h. The vertices of any triangle T are denoted by Si

and the set of its neighboring vertices by K(i). A cell C/for each vertex Si is

constructed by the union of the sub-triangles resulting from the subdivision

by means of the medians of each triangle of 7_ that is connected to Si, see

Figure 4.1. The boundary of Ci is denoted by OCi and the unit outward

normal to OCi by _ = (v/x, vi_). The union of all these control volumes

constitutes a discretization of domain f_ :

g_

_'_= UCi

i=1

where N_ denotes the total number of triangle vertices in the mesh. Fig-

ure 4.2 depicts the dual finite-volume mesh associated with a typical un-

structured triangulation.
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Figure 4.1 : Cell Definition in an Unstructured Mesh

Figure 4.2 : Dual Mesh Associatedwith a Typical Unstructured
Triangulation

4.1.3.2 Discretization of the Euler Equations

With the computational domain discretized as explained in Section 4.1.3.1,

integrating (4.2) over the individual control-volume cells in a reference

spaceyields

,(0) Ot I_ da_ + ,(0) V. 3_¢(W,_)Jdf/_ = 0 (4.3)
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Sincethe partial time derivative is evaluated at a constant value of _, it is

moved outside the integral sign in (4.3)

d /c JW dfl_ + _ V . fc(W,_:)J dfl_ = O-_ ,(o) _(o)

Switching from the _ reference space to the x space at time t,

d /c Wd_x + fc V. fc(W,_:)df_: =0

Integrating the last of the above equations by parts yields

_(,) c,(t)

where OCi(t) is the cell boundary.

4.1.3.3 Approximation of the Convective Fluxes

The integral of the convective fluxes in (4.4) is approximated using a Pdemarm

solver based on Roe's approximate Riemann solver [57], while the Steger-

Warming flux decomposition [60] is employed for the far-field boundaries :

"Tc(W'_)'nder= Z _R°e(wi'Wj'nij'aiJ)
el(t) jeK(i)

+ (_sw (Wi, W_, _i_, _i_)

Here ¢Roe and _sw denote the numerical fluxes of Roe and Steger-Warming,

respectively, Pc¢ is the far-field boundary and W¢¢ is the vector of physical

variables associated with the fax-field uniform flow. nij and _ioo are integrals

of the normal to the cell boundary defined as

f
= [ _ da

Jo edt)nocj(O

3o

1 ._c,(t)nocj(,)x'" _do"

I [ _:. ff&r
II'++++llJoc,(t)nr¢¢
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Roe's numerical flux for first-order spatial accuracyis defined by

vR°e(u, v, _,_) = 5

_ _(u,v,_)_ _,[_,,zdl(v 2 U)

where .4(U, V, 17) is Roe's mean value of the flux Jacobian matrix 05_
OW"

(4.5)

4.1.3.4 Extension to Second-Order Accuracy

As mentioned above, the upwind numerical integration scheme is only first-

order accurate. In order to achieve second-order accuracy, an extension of

Van Leer's MUSCL [66] method is developed for unstructured meshes.

Based on the spatial approximation used in this method, the gradi-

ent of any function is constant over each cell of the mesh. In the MUSCL

approach, second-order accuracy is achieved by extrapolating the values of

Wi and Wj at the cell interfaces OCi fq OCj to get Wij and Wji respectively

given by

1 (V W)/_ "wij=w,+ 5

w,i=wi-_

Here the approximate nodal gradients (VW)_/are obtained via a/3-combina-

tion of centered and fully upwind gradients :

(vw)f = (1- Z)(vw)_ _'_ + Z(vw)_,_'w

The centered gradient (VW) c_NT = (VW)_7 ° can be chosen as any vector

satisfying

(vw)7 EN_•_ = w_ - w,
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Tocomputetheupwindgraaent, notethat (VW)7w= (VW)_71.Thenit
follows that

(vw)F w= 2(vw)_=__ (vw)_-

The half upwind gradients (/3 = 1/2) are computed via a linear interpolation

of the Galerkin gradients computed in each triangle of Ci so that

_ ,,_//_ VWIA dxdy
(vw),_=l/_

/c_ dxdy

__ 1 area(/\) 3

a o lC ) 3 Z
ACCI k=l,kCA

where N_ is the P 1 shape function associated with node k of triangle A.

To damp or eliminate spurious oscillations which may occur in the

vicinity of discontinuities, a slope limitation procedure is enforced. First,

the fictitious states W_j and Wji are defined as

wi_= w, - 2(vw),. _ + (w, - w,)

wi_=wj - 2(_w)j . _ + (w, - wj)
The slopes are obtained via a van Albada [65] average :

dW, j = Ave(Wj - W,, W_ - W,3)

dWj, = Ave(W,- Wj, Wj - W;,)

For two scalars a and b, the van Albada average is given by

f a(b 2+e2)+b(a 2+e2) if a-b>0
Ave(a, b) a 2 + b _ + e2

0 otherwise

In the above expression, e is a small number introduced to avoid a zero

denominator.

The new extrapolated values for the flux function ¢I'R°_ are computed by

1

w_j = w_ + _dW_j
1
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4.1.4 Time Integration and the Geometric Conservation Law

The resulting semi-discrete form of (4.4) is

 (Aiwi) + Fi(w, g, k) = 0 (4.6)

f
where Ai = [ dQ_, Wi denotes the average value of W over the cell

Jc

Ci(t), :_ is the vector of time-dependent mesh point positions, W is the

vector formed by the collection of Wi over all the mesh points and Fi are the

ALE diseretized convective fluxes.

Let t = n_xt be the time at the n th time step. The integration of (4.6)

leads to

_tn+l

A_+IW_ +a - A_W[ _ +/. Fi(W,_,_:)dt = 0 (4.7)

The question now arises as to where the convective fluxes are to be evaluated

at each step. Choices include the initial configuration (t n, _'_) or the final

configuration (t "+1 , _-_+1) or an intermediate one between these two.

The same ambiguity also arises for the velocity computation, £. It

has been shown by Lesoinne and Farhat [42] that any proposed method

chosen to integrate the fluxes must satisfy the condition that the state of

uniform flow must be preserved under arbitrary mesh motion. This requires

that the change in area of each control volume between steps tn and t,_+l

should be equal to the area swept by the cell boundary during time At '_ -

t "+1 -t". Laws of this type are generally referred to in hterature as Geometric

Conservation Laws (GCL). The GCL derived in [42] stipulates that the flux

integrand in (4.7) has to integrated at the mid-point configuration between
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(t", _) and t n and tn+l.

Fi(W,_,#) dt = AtFi(W",P+_,# _+_)

_+,_ _ _" + P+_
2

:..+½ _ + P+_
2C

At n

Once the fluxes are computed, (4.6) is integrated in time using a 3-step

variant of the Runge-Kutta method [22, 38].

4.1.5 Implementation of Boundary Conditions

The present implementation handles three types of boundary conditions :

(i) the slipping boundary condition at the solid boundary, (ii) the inflow and

outflow boundary conditions at the far-field boundaries and (iii) a periodic

boundary condition for rotor-stator interaction calculations. Implementation

of each of these boundary conditions is described next.

4.1.5.1 Slip Boundary Condition

The slip boundary condition (U-_ = _. _) is prescribed at the solid boundary

Fb. This is imposed weakly by modifying the fluxes appropriately and it can

be shown that at the wall boundary

with

f
" =/ ffdo" and Girb =--
nirb ,]aci(t)nI'b(t)

o}Pinirb=

Pi r_iFby

pill_ir_ll_ir_

1/o •
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4.1.5.2 Inflow and Outflow Boundary Conditions

At the inflow and outflow boundaries, a precise set of compatible exterior

data values that depend upon the flow regime and velocity direction need

to be specified. The flux integral from (4.6) is evaluated at the far-field

boundaries (F f) using a non-reflective version of the flux-splitting scheme of

Steger and Warming [60] :

where

._c(W,_) ._da = Ac+(Wi,g,a). Wi + Ac-(Wi,_,a) • Wf

= OW oll, llh

and IVy is the vector of state variables corresponding to the exterior flow

regime.

4.1.5.3 Periodic Boundary Condition

Another type of boundary condition incorporated into the present implemen-

tation is the periodic boundary condition used typically in computations such

as rotor-stator interaction simulations, where only one or a few airfoils are

employed to model an entire stage. An assumption made for this purpose

is that the boundaries of the mesh on which periodic boundary conditions

are imposed have to be identical. This assumption is not that restrictive as

it would otherwise be not possible to have a periodic flow on a non-periodic

geometry.

For example, consider Figure 4.3 in which periodic boundary condi-

tions are applied along the interfaces AA' and BB'. Interface AA' is chosen

or defined as the master interface, i.e., the interface along which the fluxes

and variables will actually be computed, as opposed to interface BB' which
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is defined as the slave interface where values of new variables a_e obtained

from the corresponding mesh points on AA'. In order for this mapping of

variables to be possible, the placement of mesh points on AA' has to be

exactly identical to that on BB'.

To compute the fluxes at mesh points a/ong the master interface, it is

essential to know not only the values of variables at all mesh points connected

to the point under consideration, but also the gradients which are required

for second order spatial accuracy. On account of this, it becomes necessary

to consider all mesh points connected up to two levels to the point on the

master boundary.

In the implementation of the periodic boundary condition, ghost tri-

angles are constructed on both the master and slave interfaces as seen in

Figure 4.4. In this, the shaded triangles are attached to the master inter-

face, lying 'inside' towards the slave interface. These are exactly duplicated

on the slave interface. Likewise, triangles connected to the slave interface

lying towards the master interface are duplicated on the master interface.

It should be noted that triangles are duplicated up to only a single level of

connection at the slave interface but up to two levels of connection at the

master interface. At duplicated mesh points, variables are obtained from the

corresponding original points. This allows the exact computation of both

gradients and fluxes.

4.2 Summary

This chapter reviewed a finite-volume approach to Euler flow computations

on unstructured triangular meshes. Details for spatial discretization, com-

putation of convective fluxes, implementation of boundary conditions, time

integration and the geometric conservation law were given.
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Figure 4.3 : Mesh Requirements for Periodic Boundary Conditions

This concludes the description of a finite-volume approach to per-

forming Euler flow computations on unstructured meshes. The next section

examines the main challenges involved in extending the capabilities of the

current method to discontinuous unstructured meshes.
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Chapter 5

A Review of Flow Computations on Non-Matching
Meshes

As mentioned in earlier chapters, the main research objective is to develop a

method to perform flow computations on non-matching unstructured meshes.

This chapter discusses the motivation for such problems and reviews recent

efforts taken in this direction, highlighting their merits and drawbacks.

5.1 Rotor-Stator Interaction in Turbomachinery

The compressor and turbine components of an aircraft engine are usually

comprised of several successive stages, each stage being made up of a rotat-

ing component, the rotor, and a non-rotating component, the stator. The

function of the rotor is to add energy to the flow by mechanical interaction

of the fluid with the blades, during which the fluid acquires angular momen-

tum. The-stator removes this angular momentum and diffuses flow to raise

pressure. This combined action of the rotor and the stator is of fundamen-

tal importance to the performance and efficiency of the engine and hence is

a matter of key research interest. An engine usually contains several such

rotor-stator stages in succession and hence the ability to analyze such stages

forms the first building block in an attempt to simulate a whole aircraft

engine.
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From an aerodynamic point of view, an understanding of the effect

that an aft airfoil has on the flow in the region of the airfoil behind it is

crucial in mainly two respects. The first, namely inviscid interaction be-

tween adjacent airfoils and second, interaction on account of viscous effects

[18]. Gradients due to inviscid flow have effects on both the upstream and

the downstream sides of the airfoil up to a length scale equal to the pitch

or chord of the cascade. This can cause unsteadiness in flows both in up-

stream and downstream airfoils if the axial spacing between them is less

than approximately the airfoil chord. Viscous effects, on the other hand,

only affect downstream blades by creating wakes in the flow field. However,

disturbances caused by wakes are stronger and do not decay as fast as those

caused by inviscid flow and can be felt several chords downstream and even

in cases where the airfoils are spaced far apart. In most cases, both inviscid

and viscous effect are equally dominant and occur simultaneously.

As mentioned in Chapter 1, interaction between adjacent airfoils re-

suits in forced resonant vibration, which can be of importance from an aero-

elastic perspective.

5.2 Issues in Computer Analysis of Rotor-Stator Interaction

The main hurdle to overcome in performing computer analysis of rotor-stator

interaction is the need to compute flows across mesh interfaces when meshes

no longer remain continuous.

A method to perform Euler flow computations on unstructured trian-

gular meshes was described in Chapter 4. Finite-volume cells are constructed

around each node by joining the medians of triangles to their centroids as

shown in Figures 4.1 and 4.2. Fluxes are computed by constructing Rie-

mann problems at the interfaces of adjacent cells which are processed by
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Figure 5.1 : Finite-Volume Cells on Matching Meshes

using Roe's approximate Riemann solver. Difficulties that arise on account

of the choice of spatial discretization in the current method and the chal-

lenges that they pose while extending the present method to the case of

non-matching unstructured meshes will be examined in this section.

5.2.1 Finite-Volume Cells on Matching and Non-Matching

Unstructured Triangular Meshes

Consider two unstructured triangular meshes aligned at an interface as shown

in Figure 5.1. The bold horizontal line demarcates the interface between

these meshes while the dotted lines represent the mesh triangles. Finite-

volume cells constructed around mesh points are shown by solid lines. In

this figure, it is observed that cell boundaries on both sides of the interface

are continuous, and fluxes for points lying on the interface can be easily

computed by adding fluxes computed on each of the half-cells.

Next, consider the situation when the mesh on the bottom is given

some displacement to the right as shown in Figure 5.2. In this case, the cell
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Figure 5.2 : Finite-Volume Cells on Non-Matching Meshes

boundaries are no longer aligned and computation of fluxes at points lying

on the mesh interface becomes non-trivial. This relative sliding of mesh

cells along the interface represents the key difficulty in the development of

a method to treat non-conforming unstructured meshes. An example of

slipping meshes and arising mesh discontinuity can be seen in Figure 5.3.

5.2.2 Goals for Current Research

The focus of current research is to develop a method to enable flow computa-

tions to be performed on unstructured triangular meshes even when meshes

axe no longer continuous. While motivations for such application are numer-

ous, stress here will be laid mainly on analyzing multistage turbomachinery

flows such as in rotors and stators.

Other cases of interest in turbomachinery applications where such

mismatch could occur would be interaction of flow and mechanical compo-

nents between non-rotating components such as inlets and diffusers with a

57



SPACEFOR
• STATOR BLADE

PATCH BOUNDARY ALONG
WHICH ZONES 3 ANO 4

su_ PASTEACHOTHER

ZONE3

8_ SPACE FOR
ROTOR BLADE

ZONE4

Figure 5.3 : Slipping Meshes in Rotor-Stator Interaction

rotating component such as a large fan. Relative motion of meshes would

also have to be accounted for in the motion of control surfaces on aircraft

wings and also in store separation simulations.

The method developed should satisfy the following requirements :

1. Accuracy : The method should preserve the accuracy of the present

finite-volume scheme without introducing any additional sources of

error on account of mesh mismatch.

2. Computational Efficiency : The long-term goal of current research

is to carry out high-performance three dimensional analysis of air-

craft engine systems using massively parallel processing. The method

should be amenable to parallelization. Thus, the schemes should favor

locality to reduce communication overhead as much as possible.

3. Computational Tractability : Several solutions have been sug-
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gestedfor the problem at hand. However,someof them have major

drawbacks in the sensethat they areeither not parallelizeable or are

soinvolved in nature that programming them for complex geometries

becomesalmost impossible. The method developedshould be com-

putationally simple and easy to program, making extensionsto more

complicated and three dimensionalcasespossible.

5.3 Review of Earlier Work

Several solution strategies have been proposed to the problem of having non-

matching meshes for rotor-stator interaction. These can be grouped into the

following two categories :

1. Dynamic remeshing at the interface between rotating and non-rotating

components.

2. A multiple mesh or zonal approach in which meshes are generated

separately for each of the rotating and non-rotating components and

mesh mismatch is handled by transferring and exchanging information

from one mesh to another.

Each of these approaches will be described next.

5.3,1 Dynamic Meshes

A natural approach to deal with non-matching meshes is to perform remesh-

ing at the interface whenever mesh triangles become too distorted. Giles

[29] employed this to perform rotor-stator interaction for turbine blades.

Referring to Figure 5.4, meshes attached to the stator and the rotor are

constructed separately and are kept disjoint. A set of fictitious cells or glue
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Figure 5.4 : Dynamic Remeshing of Fluid Meshes on the

Rotor/Stator Interface

cells is constructed at the interface between the individual meshes, so as to

connect corresponding points on either side of the interface.

Once mesh motion is initiated (in this case, by moving the lower mesh

to the right), the glue cells become distorted as seen in Figure 5.4. After a

limiting value of distortion is reached, a new set of glue ceils is constructed

so that the moving meshes are either completely realigned or their degree of

distortion is minimized.

This idea is conceptually simple, however, it requires identical spacing

of mesh points on the mesh interface, which is generally impossible in the

case of unstructured meshes. An extension of this method to unstructured
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meshes would require multiple-layer remeshing after every few time steps,

which hinders paraUelization. This problem would be exacerbated in three

dimensions.

5.3.2 Multiple Patched Meshes or Zonal Approach to RSI

To obviate the problem ofremeshing and having specificmesh requirements,

several examples can be found in literaturein which mesh attached to the

rotor and the stator are patcheclat the interfaceand allowed to slidefreely.

Flow computations are made possible by an exchange of information between

individual meshes at each time step.

Rotor-stator interaction is one example in which multiple patched

meshes are used. Other instances are domain decomposition for parallel

processing,Chimera or oversetgrids,localizedmesh refinement and coupling

of solutionsobtained by differentmethods on differentparts of the mesh. Of

these,domain decomposition and Chimera or oversetgrids are more relevant

to the present problem and willbe brieflyexplained next for future reference.

5.3.2.1 Domain Decomposition

Within the context of parallel processing for large scale physical problems,

it is common to divide the discretized computational domain (like a mesh or

grid) into smaller subdomains and assign each subdomain to a processor of

the parallel machine. Each processor performs computations on the individ-

ual subdomain assigned to it, treating it as a separate problem with its own

boundary conditions. The key issue in this case becomes the development of

appropriate boundary conditions at the interface between two or more adja-

cent subdomains and the exchange of information. The problem at hand is

similar except that there is the additional relaxation of the requirement of

the mesh lines to be continuous.
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5.3.2.2 Chimera or Overset Grids

Development of Chimera or overset grids took place to allow the construc-

tion of structured grids in complex two dimensional and three dimensional

geometries by overlapping blocks of body-fitted structured grids.

For example, a major grid isgenerated around a main body element

and minor grids are then overset on top of the major grid with a common

area of overlap in which solutionsare matched across grid interfaces.The

manner in which grids overlap can be quite arbitrarywithout requiring the

grid boundaries to join in any specialway.

As in the case of domain decomposition, it becomes important to

impose the right boundary conditions on the boundaries of the individual

meshes and transfer information from one mesh to another.

h_eCmam _

Figure 5.5 : Example of Chimera Grid Construction
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As mentioned above, the central issuein the useof multiple meshes,

whether for domain decomposition or in Chimera or overset grids is the

application of appropriate boundary conditionsat the grid interfacesand the

transfer of information from onecomputational domain to another. Methods

developedfor suchapplications differ primararily in the way this information

exchange takes place and can be broadly classified into the following two

categories :

1. Exchangeof information occursby conservatively transferring fluxes

from one mesh to another. These will henceforth be referred to as flux

conservative or simply conservative methods. The exact meaning and

significance of conservation will be explained in a later section.

2. Another approach is to exchange physical variables between meshes as

opposed to fluxes which are thus no longer conserved. Such methods

are usually referred to as non-conservative.

The concept of flux conservation and its significance to computational fluid

dynamics will be discussed next.

5.3.3 Flux Conservation

On account of the highly non-linear nature of the Euler and compressible

Navier-Stokes equations, it is a well known fact that discontinuities may de-

velop in the solution even if smooth initial conditions have been given. Such

solutions that violate the smoothness requirements of the differential form at

a discontinuity manifold, but which satisfy the integral form everywhere are

called weak solutions. Because of the non-linearity of the governing equa-

tions, multiple weak solutions may be mathematically possible. A solution

which is physically relevant can be selected through criteria proposed by
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Figure 5.6 : Flux conservation for a Control Volume

Lax [39], namely conservation and the entropy condition. This condition

and its significance wiU not be discussed here and the reader is referred to

[39, 43] for details.

As its name implies, the basic principle behind a conservation law

is that the totai quantity of the conserved variables in any region changes

only due to the flux through its boundaries. To clarify this, consider the

conservation of mass or the continuity equation of the Euler equations :

o//£pdV -I- p V. dS = 0 (5.1)

Referring to Figure 5.6, this implies that the time rate of change of mass

inside the control volume V is equal to the net flow of mass in or out of

the control volume (i.e., the flux) through surface S. Hence, to prevent an

unnatural creation or destruction of the quantity p by a numerical scheme,

it is essential that the flux be computed correctly. This is commonly referred

to in literature as flux conservation. Failure to conserve fluxes in numerical
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using a Conservative Method
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Figure 5.8 : True and Computed Solutions to the Burgers' Equation

using a Non-Conservative Method

schemes gives rise to artificial source terms for the governing equations, which

in turn may lead to the incorrect positioning of shocks and discontinuities.

This is illustrated in Figures 5.7 and 5.8 (from [43]) for the Burgers' equation

+ = 0).

For the spatial discretization adopted in the present numerical scheme,

this implies that the numerical flux through the cell boundaries is such that

the total mass (and other conserved variables) remains constant in each cell.

Several flux conservative methods proposed for patched meshes are

described below.
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5.3.4 Flux Conservative Methods for Patched Meshes

Flux conservative methods have been developed for patched meshes, both

in the context of rotor-stator interaction and overset meshes. Rai and co-

workers [51, 53] have been credited with the development of a flux conser-

vative method for patched structured grids for rotor-stator interaction ap-

plications. This was extended to the case of unstructured triangular meshes

by Mathur and others [46, 47]. Berger [10] proposed a flux conservative

method for overset grids, with particular applications to adaptive grid re-

finement. Wang [67] proposed a flux conservative scheme for overset grids

which guaranteed conservation locally at each interface of grid overlap and

thus globally for the overlap as a whole. This section will briefly go over the

relevant details of these methods.

5.3.4.1 Rai's Conservative Approach for RSI

In the mid-1980s, Rai [44, 51, 52, 53, 54] developed a method for accurate and

efficient computation of flows using patched grids for rotor-stator interaction.

The key feature of this approach was the emphasis laid on the conservative

treatment of the grid interface.

For the purpose of illustration, assume that only two grids are to

be considered, having an interface as shown in Figure 5.9. In this figure,

the solid lines are the grid lines for the individual grids, the bold solid line

denotes the grid interface and the dotted lines indicates the cells constructed

for finite-volume computation. In this example, fluxes have to be computed

at a point O, lying on the grid interface. To obtain this flux correctly, Rai

extends the grid of Zone 2 into Zone 1 such that a finite-volume cell like

RSTU can be constructed. This cell is so constructed to allow its boundary
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Figure 5.9 : Grid Extrapolation for Rai's ConservativeMethod

ST to align with boundary of the finite-volume cells of Zone 1, namely, line

CD.

Fluxes through the boundary ST areobtained by aconservativeinter-

polation of computed fluxes computed on line CD. Following a conservative

flux interpolation procedure, fluxes through segmentssuch as ST are ob-

tained in sucha way that the sum of thesefluxes equalsthe sumof the total

fluxes acrossCD. This interpolation procedure involves the determination

of the location of segmentST on line CD and fractions of cell boundaries

of line CD (volume weights) which contribute fluxes to ST. Details of this

interpolation schememay be found in [51]. In order to establish continuity
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along the grid interface, values of variables on the interface for Zone 1 are

obtained by linear interpolation of those values for Zone 2.

This method has been shown to work well on a variety of problems

where non-matching grids arise, including rotor-stator interaction. However,

the grid construction and extrapolation as required by this method are pos-

sible only for structured grids. Furthermore, the flux interpolation is valid

only if fluxes are assumed to be constant in each finite-volume cell. This

would not be the case for the second-order accurate treatment as described

in Section 4.1.3.4.

5.3.4.2 Berger_s Method for Overset Grids

Berger [10] proposed a method for conservative transfer of fluxes for overset

grids. This method considers the region of overlap between grids and fluxes

are transferred based on the manner in which grid cells of the individual

grids overlap each other.

Consider two overlapping grids as shown in Figure 5.10. Assume that

a cell-centered scheme is adopted for computations, that is, the grid lines

themselves represent the cell boundaries and variables are computed for each

ceil (typically at its centroid) rather than at the grid vertices. Let the grid

represented by the horizontal and vertical lines be the major or master grid.

A cell from the minor or slave grid is shown by the oblique lines. To compute

the fluxes for this minor cell, the method requires the determination of the

extent of overlap (volume weight) this cell has with the cells from the major

grids which it overlaps or intersects as shown by the areas A1, A2, A3 and A4

in Figure 5.10. This would guarantee flux conservation as the sum of fluxes

transferred to the minor grid would be exactly equal to that in the region of

overlap for the major grid.
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Figure 5.10 : Cell Intersection for Berger's Method

Although this method is fully conservative, it is complex and compu-

rationally intensive. Determining the volume weights for intersecting rect

angular cells alone is a very difficult problem in computational geometry.

An extension to cells like those obtained from the finite-volume construc-

tion described in Section 4.1.3.1 for triangular meshes and for cells obtained

similarly for tetrahedral meshes would be even more cumbersome, if not

impossible. Again, this method is valid only if fluxes are assumed constant

over the finite-volume cells, which is not the case with the present spatial dis-

cretization method. However, one advantage of this method should be cited :

its ability to couple solutions obtained by different discretization methods on

different grids because fluxes are conserved on the basis of grid geometries

alone.
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5.3.4.3 Wang's Method for Overset Grids

Another flux conservative method for overset grids is that of Wang [67]. This

method is similar to that of Rai (Section 5.3.4.1) except that it allows the

grid overlap to take place arbitrarily.

In Figure 5.11, the horizontal and vertical lines mark the cell bound-

aries of the major grid while the oblique lines show the cell boundaries of the

minor grid. For the sake of illustration, assume that the flux through line

1-4 is to be obtained.

Line 1-4 intersects the lines of the major grid at points 2 and 3 as

shown. Clearly, the total flux through 1-4 would be equal to the sum of fluxes

through the partial segments 1-2, 2-3 and 3-4. These fluxes are obtained in

the following two-step procedure :

1. Reconstruction : Obtain the values of the physical variables on either

side of the partial segments (such as 1-2) by interpolation of cell-

centered values from the major and minor grids.

2. Riemann solution : The reconstruction step sets up Riemann prob-

lems on each of the partial segments which are then solved to obtain

the fluxes.

This method is the most attractive amongst the ones seen so far for

structured grids. It involves less geometrical computations than Berger's

method (Section 5.3.4.2) and could be used in many applications.

5.3.4.4 Mathur's Conservative Method for Unstructured Meshes

Mathur and co-workers [46] developed a conservative scheme for unstructured

meshes for applications in both rotor-stator interaction and adaptive mesh

refinement.
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Wang's Method

The controi volume around a point for the difference scheme is ob-

tained by constructing cells formed by the union of the edges of all triangles

to which the point belongs, excluding the edges which connect the point

to other triangle vertices. Details of the resulting difference scheme can be

obtained in [46]. Two typical cells on either side of the mesh interface are

shown in Figure 5.12.

In order to compute conserved fluxes, partial fluxes at points such as

A and D are first obtained by considering the contribution of fluxes obtained

through their respective control volumes. In the next step, these partial

fluxes are exchanged to and from the other side of the interface through

the flux interpolation scheme described in Section 5.3.4.1. The total flux

then is the sum of the flux computed through the control volume and the

flux obtained from exchange with the other side. This facilitates both flux
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conservation and independence of flux computation for each mesh.

This method is the only one available in literature for unstructured

meshes. It is computationaLly efficient and allows computations to be done

independently for each mesh, which facilitates parallelization. The only pos-

sible drawback is the loss in accuracy at the mesh interface by making the

assumption of fluxes being constant within each control volume, even in the

case of a higher order scheme such as in Section 4.1.3.4.

5.3.5 Comments on Flux Conservative Methods

The need for flux conservation between patched grids and methods which

have been designed to do this have been discussed so far. However, it is

felt that while explicit global flux conservation, if achieved, would render a

method suitable for application to patched grids, it may be possible to get

away with this requirement by careful usage of the so-called non-conservative

schemes.
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First, flux conservativemethods do have drawbacks. For instance, it

hasbeenreported [49] that attempts to enforceflux conservationby methods

such as those described abovehave resulted in the creation of instabilities.

Secondly, from a computational point of view, almost all flux conservative

methods need to determine somekind of volume weights in the processof

flux transfer. Methods reported sofar havebeen either only for structured

grids with rectangular cells or for caseswhere the flux is assumedto be

constant in eachcell. The latter assumption is alsomade in the lone casefor

unstructured meshesreported in Section5.3.4.4.

It should be noted that the final goal of current work is to developro-

bust methods which can be implemented in both two and three dimensions.

Determination of volume weights in three dimensionswould be computa-

tionally intensiveand very hard to implement. Therefore,another approach,

similar to oversetgrids is followed. Prior to giving details about this, some

light is shedon oversetgrids and the useof non-conservativeschemes.

5.3.6 Overset Grids and Non-Conservative Schemes

Recent progress in parallel processing for CFD has given rise to interest

in treatment of patched grids and the development of artificial boundary

conditions at the grids' interface. Several flux conservative solutions have

been proposed to these problems, some of which have been presented in

Section 5.3.4. This section reviews non-conservative methods used typically

in the context of overset or Chimera grids and particularly at their reported

inability to capture the position of shocks and discontinuities correctly.

In an interesting review article, Keeling and others [31] show that

if used correctly, non-conservative methods can give results comparable to
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thoseof conservativemethods with less computational expense. First, it is

shown that it is possible to construct unique single valued solutions to the

conservation laws in fluid dynamics using overlapping meshes. Details of this

are lengthy and have been omitted here for brevity. Secondly, it is established

that local convergence with proper continuity requirements suffices to ensure

correct convergent solutions. This is briefly explained in the next subsection.

5.3.6.1 Discrete Conservation

Systems of conservation laws of interest to fluid dynamics, namely, the Euler

equations, can be concisely written in the classical differential form as

OW

+ v. F = 0 (5.2)

Details regarding vector notation and initial and boundary conditions have

been omitted in (5.2) to avoid clutter. Also, these follow from the equations

in Section 4.1.1.

These equations can be discretized using a finite-volume scheme such

as in Section 4.1 to yield the following semi-discrete form of (5.2) :

Ai[W: +x - W:] = -At Z Fi(Wi, Wj) (5.3)

jek(i)

Here, n denotes the current time step, At the current increment in

physical time, Ai the area of the cells associated with node i, k(i) the set of

nodes connected to node i via triangle edges and Fi, the numerical approxi-

mation to the fluxes in (5.2). Now, in order to achieve discrete conservation,

the required condition is that if the terms in (5.3), following Section 5.3.3,

are summed over all ceils, fluxes across opposite sides of interior cells should

cancel each other in a telescopic fashion and only the fluxes on the boundary

74



of the domain remain. Thus if fl is the discretized domain and 0_'/ is its

boundary, then,

A,W:+1= _ A,W:- _XtZ Z F,(W,.Wj) (5.4)

It has been shown [13] that if the discrete conservation requirement is sat-

isfied only approximately, such that any discrepancy vanishes with mesh

refinement, then a correct convergent solution is obtained. Otherwise, the

solution converges to that of (5.2) with a fictitious source term.

5.3.6.2 Discrete Conservation on Overset Grids

On overlapping grids, the discrete equation (5.3) for a cell lying in subdomain

_'/i can be written as

_i')[w:÷''(')- w:'(')l=-_t _ F_°(w_'),w_')) (5.5)
j_k(i)

where superscript (i) indicates that all terms pertain to subdomain f2i. In

addition to the usual physical initial and boundary conditions, (5.5) must be

supplemented with another artificial boundary condition

W_ '(i) = (riWn,(J))i (5.6)

for grid points of fli lying in the region of overlap in flj. In (5.6), ri is the

trace operator (which can be thought of a boundary operator on W O) with

a few additional definitions to account for discontinuities which fall in the

realm of functional analysis). This means that the value of W_ '(i) for nodes

i lying on a line of overlap used in (5.5) to compute fluxes, must be such that

it approximates the value of W n'(j) on the boundary of the overlap of fli into
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_2j. Computationally, ri is a transfer operator, usually involving some form

of interpolation from 12i to _i.

Another point to note is that the computation of fluxes may depend

upon the values W in the overlap region which have to be accurately obtained

for correct computation of fluxes. Once these values of W in the overlap

region are obtained to the desired level of accuracy, fluxes across the physical

interface between adjacent grids can be computed as in the case for interior

grid points, and a condition similar to (5.4) results :

(i) n+l,(i)Ai Wi _ _ (i) n,(i)- m i W i - At _ _ ip(i)(w(i i) (i),wj ) (5.7)
i i i jEk(i),jEa(_

Thus, it is seen that the overset grid scheme is piecewise conservative for each

individual subdomain. It has been suggested in [31], that such piecewise

conservation with a proper treatment of artificial boundary conditions as

mentioned above, would be sufficient to obtain correct convergent solutions

on multiple overset domains. Overall discrete conservation would not be

essential.

5.3.6.3 Further Remarks on Overset Grids

Recent developments have shown that overset grids can be used with confi-

dence in CFD. At the same time, it has also been mentioned that the use of

overset grids resulted in incorrect positioning of shocks and discontinuities,

which is attributed to the non-conservative manner in which interpolation is

performed. However, Keeling et aI [31] emphasize that while overset grids

are not a priori conservative, their reported inability to treat shocks and dis-

continuities properly is often blamed incorrectly on their non-conservative

nature and several clarifying explanations are given. It has been noticed
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that in many cases where claims are made about the dissatisfactory per-

formance of non-conservative schemes, proper experimental techniques are

often lacking leading to several sources for numerical error :

1. The performance of CFD methods depend crucially on the grids on

which they are tested and robust methods are known to fail on grids

that are inadequately refined or improperly positioned. Errors may

thus arise if grids of largely varying refinement are patched and an

overset approach is followed.

2. In some cases, an inadequate interpolation scheme is used, resulting in

the creation of spurious waves which eventually pollute the solution.

3. Insu_cient overlap extent can also give rise to incorrect flux com-

putation. To ensure correct computation of fluxes, grids have to be

overlapped consistently with the spatial discretization employed.

As seen above, great importance is placed on the need to obtain accu-

rate values of variables at points of grid overlap. One suggested method to

obtain these has been the use of an ENO (essentially non-oscillatory) inter-

polating scheme [49]. In the present work, another highly accurate projection

scheme which is growing in popularity, namely the mortar method, has been

used. This method is described in the next section.

5.4 The Mortar Element Method

The mortar element method is being increasingly used in domain decompo-

sition for parallel processing of problems in the physical sciences. Originally

developed to couple solutions obtained by different methods on adjacent

meshes, it now finds applications in solid and fluid mechanics and is also a

fertile area for research in applied mathematics. This section gives a brief
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overview of the mortar method, startingwith a historicalbackground, math-

ematical statement, properties,and merits and demerits over other compa-

rable methods.

5.4.1 Historical Background

The mortar element method was firstdeveloped for the purpose of coupling

differentdiscretizationson differentsubdomains, namely spectral and finite

element methods [11].On account of itsremarkable properties,it has also

been used for non-conforming meshes for ellipticproblems [12,34],in fluid

mechanics [i]and also for slidingmesh applicationswith spectral methods

[3].In each case, itprovides an e_icient way to glue solutions on interfaces

of non-conforming meshes.

Later on, the method has attracted attention in the fieldof domain

decomposition for parallelprocessing mainly on account of itsabilityto pro-

vide optimal accuracy in the gluing process. Another application of interest

has been localizedmesh refinement [34]for ellipticand parabolic problems

and also slidingmeshes such as in the context of rotor-statorinteraction.In

these cases,the mortar element method provides an auxiliarysetof equations

to solve for conformity in the solution variables.

While earlierresearch has focused on the use of the mortar element

method fornon-overlapping domain decomposition, ithas only recentlyfound

use in overlapping domain decomposition [12].In thiscase, the mortar ele-

ment method provides an optimally accurate way to interpolate or project

values of variablesfrom one mesh to another. This of crucialimportance for

robustness as seen in Section 5.3.6.3.It willbe in this rolethat the method

willbe presented here.
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5.4.2 Mathematical Background

As mentioned in the introduction to this section, the mortar element method

has attracted the attention of mathematicians on account of its ability to pro-

vide optimal accuracy in gluing solutions at interfaces. This section presents

theory of the mortar element method emphasizing its role as a projector.

Assume that a piecewise linear solution ul is known on an interface

F1 as seen in Figure 5.13. A piecewise solution u2 is sought on the interface

I"2. The end points of 1"1 and F2 match whereas interior points need not do

so, as is illustrated in the figure. Although u2 on F2 can be obtained in a

trivial manner by matching linear interpolation, this recovery would be only

first-order accurate.

In the terminology of the mortar element method, F1 is known as the

master interface (on which the solution ux is known) and F2 is known as

the slave interface, the solution u2 on which is obtained from ul, u2 being

completely dependent on ul.

The first step in the mortar element method consists of defining piece-

wise linear test (hat) functions (¢i) on the slave interface F2, such that

1, ifx=zi;¢i(z)= O, otherwise.

except on for i = 1 and i = (n - 1) in which case the test functions are

defined such that there is zero slope at the end-points of the interface.

This being done, the mathematical statement of the mortar element

method becomes :

Find u2 on F2 such that

r¢(Ul u2)dr=O
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a F2 b

(i=O) (i=I) (i=2) (i= n-l) (i=n)

Figure 5.13 : Definition of Test Functions for the Mortar Method

with

ul(a) - u2Ca)

ul(b) =us(b)

Expression (5.8) is similar to what is called the Petrov-Galerkin (PG) method

in mathematical literature or the Method of Weighted Residuals (MWR)

in engineering literature. The point of difference is that in PG or MWR

methods, the test functions ¢ axe defined on the same interface as uz.
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5.4.3 Numerical Implementation

The integral equation for the mortar element method, (5.8) can be equiv.-

lently written as

B1 B_

This section will explain how to compute B1 and B2.

simplicity, computation of B2 will be explained first.

(5.9)

On account of its

• fori=(n-1)

1 ]:o)+5(:__:i)u_)+I (2)

(5.10)

fr 1 _ Xu(2) [1 i ]_(2)

+ _(_.- Xn_l)'U(n 2) (5.11)

• for all others

fr 1 z _u (2) 1 (2) 1 u(2)_2q_d_ "-'--_(;r,i- i-1)i_l'Jr-_(Xi+l-Xi-1)ui ".[--_(Xi+l-Ti) i+1 (5.12)

In (5.10), (5.11) and (5.12), the superscript (2) indicates that the variables

u_ are defined on r2. Also, it is observed that (5.10), (5.11) and (5.12), if

written in a matrix form, can be compactly represented as

B2 = A- u (2) (5.13)

where A is a tridiagonal matrix.
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implement. It can be shown that :

• for i = 1

fr 1,x x 'u(2) [1u_¢dr= _ i- oj o + x(zl-
z

5.4.3.1 Computation of B2

It should be noted that both u2 and ¢ are defined as piecewise linear functions

on F2. This makes the computation of B2 fairly straightforward and easy to



5.4.3.2 Computation of B1

The computation of B1 is more involved than that of B2 because ul is defined

on 1"1 while ¢ is defined on 1"2. Referring to Figure 5.14, the integral on the

right hand side of (5.9) is computed in the following manner :

1. First an ordered union of points from both the master and slave inter-

faces is assembled as shown on the intermediate line in Figure 5.14.

2. Mathematical expressions for both ul and ¢ are obtained in each of

the segments formed by the points in the union, knowing that ul and

are both piecewise linear on 1"1 and F2 respectively.

3. B1 is computed by the piecewise integration of the product of ¢ and u 1

obtained from step (2) on each of the segments obtained in step (1).

I I I I I I I

X_ 1) X(1) X_ 1) X_ 1) X(1) X (1) X (1)1 n-2 n-1 n

ii J t 1i i i I i

I I I

I n-1 n

Figure 5.14 : Interface Construction for Computation of B]

5.4.3.3 Obtaining Slave Variable Values

Computation of B1 and B2 as shown above, results in the creation of a

tridiagonal system of equations, (5.13), which can be solved efficiently to get

_2-
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5.4.4 Properties of the Mortar Element Method

Without going into too many mathematical details, the following are the

s_lient features of the mortar method as obtained from analyses of the me-

thod applied to Poisson's equation [11, 12] :

1. The discretization error is of second-order and is independent of the

size of overlap as long as the extent of overlap is not smaller than the

size of the coarser mesh [12].

2. The mortar method is capable of handling strong gradients in the

solution unlike other higher-order interpolation methods which expe-

rience spurious oscillations following Gibbs' phenomenon.

3. Computationally, it is fairly easy to implement and inexpensive in

case of one dimensional interfaces.

This concludes the discussion of the mortar element method.

5.5 Summary

1. The significance of rotor-stator interaction in turbomachinery and the

need for its computational treatment has been outlined. The central

issues that would arise in rotor-stator interaction computations are

highlighted, especially that of non-matching meshes. This led to the

identification of the goals of current research.

2. Earlier work in the area of non-matching meshes for CFD was re-

viewed, both for rotor-stator interaction and domain decomposition

and overset meshes. Two popular methods for rotor-stator interaction

are dynamic remeshing and the use of a zonal approach. Details of

each of these are given.
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3. The problem of non-matching meshes in rotor-stator interaction is

similar in nature to those encountered in domain decomposition and

overset meshes. Each of these requires the transfer of information

from one mesh to another.

4. Information exchange schemes may be classified as conservative and

non-conservative. A conservative exchange of information ensures

that the total flux across the mesh interface is conserved. In non-

conservative schemes, the flux balance is not handled explicitly but an

interpolation of conserved variables is used to get information across.

5. A possible drawback of non-conservative schemes is their lack of abil-

ity to locate shocks and discontinuities correctly. Hence conservative

methods have been preferred. However, these methods can be com-

putationally intensive and hard to implement, especially for unstruc-

tured meshes. Also, in some cases, they have been shown to give rise

to numerical instabilities.

6. Some examples of conservative methods for rotor-stator interaction

and overset meshes are reviewed.

7. A mathematical treatment of non-conservative schemes is given point-

Lug out the requirements for a higher-order interpolation scheme. It

was also seen that drawbacks attributed only to the non-conservative

interpolation scheme actually had several sources of error and in many

cases the process of interpolation was not the culprit.

8. The mortar element method and its use as a projector along an inter-

face is described.
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Chapter 6

An Overlapping Mesh Method for Non-Matching
Unstructured Meshes

Chapter 5 reviewed problems that arise in the context of rotor-stator inter-

action and the need for non-matching mesh methods in computational fluid

dynamics. Several approaches to this problem were described highhghting

their strengths and weaknesses. This chapter presents a new method devel-

oped in the present research.

6.1 Review of Requirements

The central issues arising in non-matching unstructured meshes with a finite-

volume discretization were discussed in Section 5.2. The primary concerns

were the evaluation of convective fluxes at the mesh interface and the deter-

mination of gradients required for extension to second-order accuracy.

The main requirements for a non-matching mesh method are the cor-

rect evaluation of fluxes and gradients throughout the computational do-

main, particularly at mesh interfaces, consistent with the spatial discretiza-

tion adopted in the current fluid solver. This requires an exchange of infor-

mation between sub-meshes which can be performed either conservatively or

non-conservatively as discussed in Chapter 5.
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In the present work, both overlapping and non-overlapping methods

were investigated. The non-overlapping method is described in Section 6.2.

The description is terse because the method did not perform satisfactorily.

This is followed by a more detailed description of the new overlapping me-

thod in Sections 6.3 through 6.5. This method, identified as SUM (Slipping

Unstructured Meshes) was successful on all benchmark examples.

6.2 A Non-Overlapplng Flux Conservative Method for Non-

Matching Unstructured Meshes

A method similar to that of Wang [67] (Section 5.3.4.3) was investigated.

Fluxes were directly computed at the interface between meshes to satisfy

the conservation requirement. This method, although conservative, was in-

consistent with the spatial discretization and erroneous results were obtained.

Prior to giving details about these difficulties, the method wiU be sketched

briefly.

6.2.1 Method Description

Figure 6.1 shows the interface between two non-matching unstructured mesh-

es. Boundaries of the finite-volume cells constructed from the mesh triangu-

lations on either side of the interface are shown by solid lines whereas the

triangles themselves are shown by dashed lines. In order to compute fluxes

at the mesh interface, Riemann problems are set up by considering segments

formed by the union of cell boundaries on the interface, such as the segments

AB, BC, CD,..., LM, as shown in Figure 6.1. Riemann problems are con-

structed using the conserved variables on either side of the interface at the

mid-points of these segments. Variable values at the mid-points are obtained

either by linear interpolation or by mortar projection. Fluxes through the
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interface segmentsare then computed by treating theseRiemaxmproblems

by Roe's approximate Riemann solver. Depending upon the way in which

the interface segment normals are defined, the computed interface fluxes are

added to or subtracted from the fluxes computed for the corresponding points

on the interface considering the cell interfaces with other points of the trian-

gulations. For example, in the mesh of Figure 6.1, fluxes through segments

BC, CD, DE and EF will contribute to the total flux at point D. Because

fluxes are added and subtracted in equal amounts for each interface segment,

conservation is achieved locally on each interface segment and consequently

globally on the whole interface.

jt

l ,,""

Figure 6.1 : Flux Computation at Mesh Interface

6.2.2 Inconsistency with Spatial Discretization

The method described in Section 6.2.1 is conservative. However, it is incon-

sistent with the spatial discretization adopted in the current finite-volume

method as will be seen next.

To display this inconsistency, consider a typical node in an unstruc-

tured mesh, such as node A in Figure 6.2. Fluxes at A can be computed
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in a standard manner by setting up Riemann problems at cell interfaces as

indicated by the two-way arrows. Let the sum of these fluxes be denoted

by ¢ and W be the values of the conserved variables at A. Then, the semi-

discretized equation (Section 4.1.4) for A can be written as

dW

Area(A)-_- + ¢ = 0 (6.1)

where Area(A) is the area of the finite-volume cell around A.

Next, the mesh is partitioned along line AB in Figure 6.2 to get two

meshes as shown in Figure 6.3. Nodes At and Bt define the interface of the

left mesh whereas nodes Ar and Br define the interface for the right mesh.

Fluxes for At and Ar through cell boundaries not aligned with the

interface are computed following the standard procedure for finite-volume

cells. Let these fluxes be denoted by ¢1 and ¢., respectively. The flux

through the cell interface, ¢i is computed by solving the Riemann problem

at point C on the interface as described in Section 6.2.1. The total flux for At

will thus be ¢1 + ¢i whereas that for A_ will be ¢_ - ¢i. The semi-discretized

equations for At and A_ can then be written as

d_Z!

Area(At)--_-- + (_t + ¢i) = 0 (6.2a)

Area(Ar)_ + (¢t - ¢_) = 0 (6.2b)

where WI and Wr are the conserved variables for AI and A_ and Area(At)

and Area(A_) are the cell areas of finite-volume cells around At and A_

respectively.

From (6.1) and the individual equations in (6.2), it is seen that WI #

Wr after time-integration even though points At and A_ coincide in space.
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Figure 6.2 : An Unpartitioned Finite-Volume CeU
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Figure 6.3 : A Partitioned Finite-Volume Cell

Furthermore, each of these values of W_ and Wr would be different from W

for the unpartitioned cell, which would be in error.

Another aspect of the this method which makes it practically unsuit-

able is its inability to consider information upstream and downstream of the

interface for points lying on the interface. To show this, referring to Fig-

u.re 6.4, assume that uniform states exist on either side of the interface, that
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is, for all nodesto the left of the interface, including nodeson the interface

itself, W = Wi, and W = Wr for all points to the right of the interface. If

fluxes are to be computed for Az, there will be a constant value W = Wz

on boundaries of the cell around it and hence the total flux for Al will be

zero, because the divergence of a constant is zero. However, for At, the flux

will be non-zero because W = Wt on the cell boundary aligned with the

interface but W = Wr for nodes lying to the right of the interfa_:e. Conse-

quently different values of variables will be obtained for Az and Ar after time

integration.

A I

• " ',

/ ',

•l

Bi
W:W, W:Wl

Ar

B •

Br
W=Wr W=Wr

Figure 6.4 : Inability of the Non-Overlapping Method to Compute
Fluxes

The last drawback of the non-overlapping method is its inability to

compute gradients at the mesh interface that are required for extension to

second-order accuracy. Tiffs requirement, however, can be relaxed by accept-

ing first-order spatial accuracy at the interface.

Summarizing, it is not possible to devise a consistent, non-overlapping,

non-matching mesh method for the spatial discretization adopted in the cur-

rent finite-volume scheme. To compute flows correctly, it is essential not
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only to consider variable values at the mesh interface, but also those in a

region slightly away from the interface soasto guaranteeproper transfer of

information. Theserequirementsmandate the useof an overlapping scheme.

Details of various ways in which overlapping schemescan be implemented

for unstructured mesheswill be discussedin the following sections.

6.3 Overlapping Schemes for Unstructured Meshes

The need to overlap meshes in developing a method for non-matching un-

structured meshes was brought out in Section 6.2. Overlapping schemes can

be implemented both in conservative and non-conservative forms. This sect-

ion discusses ways in which overlapping schemes can be implemented for the

current finite-volume spatial discretization. Before discussing such schemes,

a generalized overlapping finite-volume scheme will be presented.

6.3.1 A Generalized Overlapping Scheme

Two non-matching triangular meshes separated at an interface are displayed

in Figure 6.5. Both meshes, in general, are formed by unstructured trian-

gulations, but axe shown as structured for clarity. Non-overlapping portions

of each mesh are indicated by solid lines whereas the overlapping portions

(projecting meshes henceforth) are indicated by dashed lines.

The purpose of the projecting meshes is to gather information about

the state of flow in the region of overlap and enable computations to be

performed consistently with the spatial discretization. In the present case,

overlapping is essential for flux and gradient computations at the interface,

as discussed in Section 6.2.2.

Apart from the choice of conservative or non-conservative schemes in

which information is transferred between meshes, overlapping schemes differ
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with respect to the manner in which the actual mesh overlap takes place.

The following points need to be addressed while developing an overlapping

scheme :

1. Wider overlapping increases the total computational load. Conse-

quently, an optimal extent of overlap has to be determined, as a

between accuracy and computational expense.

2. implementation requires not only the overlap distance but

distribution and arrangement of mesh nodes in the region of

tradeoff

Efficient

also the

overlap.

. Once an optimal distance and arrangement of mesh nodes has been

determined, a decision must be made regarding the treatment of in-

terface nodes on either side. The main question to be answered here

is whether variables are to be updated on either side of the interface

independently of each other, or is this process mutually dependent.

The key requirement is the satisfaction of continuity at the interface.
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4. Finally, it is important that computations beperformed at the inter-

face and in the region of overlap consistently with those in the non-

overlapping regions. That is, no errors other than those associated

with information transfer, ariseon account of the meshoverlap.

Each of thesepoints will be further discussedin the subsequentsections.

6.3.2 Optimal Mesh Overlap

The needfor careful selectionof meshoverlap was stressedin the previous

section. Here, the significanceof the extent of overlap and the arrangement

of nodesin the projecting mesh is explained further.

Consider a node P belonging to the left mesh and lying on the mesh

interface as shown in Figure 6.6. In this figure, the left mesh projects onto

the right mesh in an arbitrary, unstructured manner. The right mesh is

displayed as structured and rectangular for clarity.

Interface
\

Figure 6.6 : Overlapping for Left Mesh
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Overlapping the left mesh onto the right one allows construction of

complete finite-volume cells for points lying on the interface. For example,

the finite-volume cell about P is drawn in dashed lines Figure 6.6. To up-

date the flow at P, it is essential to know the values of conserved variables at

points A, B, C, D, E and F. In addition to the conserved variables, gradients

at these points are also required for extension to second-order accuracy. This

requires knowing the values of conserved variables at all nodes attached to

nodes such as A, B, C, D, E and F. For example, to compute the gradient

at D, values of conserved variables at points E, P, C, K, J and I are needed.

Similarly, to determine the gradient at point E, values at G, F, P, D, I and H

are required. Once values of all variables and gradients are known, fluxes for

points such as P can be computed by solving the Pdemarm problems estab-

lished at the cell interfaces as indicated by the two-way arrows in Figure 6.6.

From this, it can be concluded that to compute flows for points of the

left mesh lying on the interface with second-order accuracy, it is necessary

to extend the left mesh two levels into the right mesh. A similar analysis

for the right mesh will indicate that the right mesh has to be extended two

levels into the left mesh.

The question of the distance or extent over which projection should

take place still remains unanswered. Qualitatively, the projecting mesh

should penetrate deeply enough to be able to transfer adequate amount of

information required for flux computation. Thus, if both the left and right

meshes are roughly equally refined, the second level of projection of the left

mesh onto the right mesh should approximately coincide with the layer of

nodes of the right mesh separated by two triangle levels from the interface.

The exact manner in which overlapping occurs in the method developed here

is explained in Section 6.4.1.
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This concludes the discussion on mesh overlaps. The next section

studies the enforcement of continuity on the mesh interface.

6.3.3 Enforcement of Interface Continuity

A natural requirement for any non-matching mesh method is the enforcement

of continuity at the mesh interface. Failure to do this gives rise to interface

errors that can propagate through the entire mesh and pollute the computed

solution. Two interface computation schemes may be followed :

1. In the first method, meshes are overlapped two levels onto each other.

Interface fluxes are computed and flow variables are updated indepen-

dently. This, scheme does not guarantee interface continuity, however,

because there is no explicit enforcement of relationship between the

right and left flow variables.

To illustrate this point, consider two coincident nodes located

at at 0 in the sketch of Figure 6.7. Two finite-volume cells are con-

structed around each one, one delimited by nodes A, B, C, D, E and

F and the other by nodes P, Q, R, S, T and U. Unless these two sets

of nodes coincide, values of conserved variables at these points will

generally be different. Furthermore, because of different cell geome-

tries, the normals at cell interfaces which are used to compute fluxes

will also differ. Consequently, the total sum of fluxes at 0 will depend

upon the set of nodes used to compute fluxes. Different values of state

variables will be obtained after time-integration, depending upon the

set of fluxes and the cell used. It can be concluded that this scheme

will give rise to an artificial discontinuity in conserved variables at the

interface.
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. Another way to to compute variables is to update the values of vari-

ables at points of the left mesh lying on the interface, followed by

projection of these values for interface points of the right mesh. This

scheme enforces continuity at the interface by accounting the depen-

dence of interface points for the right mesh on those for the left mesh.

Q

C

A

B_"_,." _ ,,"',L

', ,,"
,L \ ', - _ ,

,>/. r,
,., .......

R'- -_]_ S

Interface

Figure 6.7 : Creation of Discontinuities for Coinciding Nodes on an
Interface

If second-order accuracy is to be kept, the projection of interface

variables from one mesh to another has an interesting effect on the way

in which meshes need to be overlapped. To illustrate this point, consider

Figure 6.8 in which the mesh on the right is to be projected onto the mesh

on the left. Mesh representation conventions are analogous to those discussed

for Figure 6.6.

To begin, note that values of variables at points P, Q, R and S of

the right mesh in Figure 6.8 are obtained from the values at A, B, C, D and
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Interface

Figure 6.8 : Overlapping for Right Mesh

E of the left mesh. Hence fluxes at P, Q, R and .5' need not be computed.

However, in order to update flow variables at a point in the interior of the

right mesh one level away from the interface with second-order accuracy,

such as O, it is essential to know the gradient values at points P, Q, R and S.

For this, values of variables at points T, U, V, W and X are required. Hence,

even though fluxes need not be computed at the interface points of the right

mesh, it is necessary to project the right mesh one level onto the left mesh in

order to retain second-order accuracy throughout the entire computational

domain. Note, however, that if first order accuracy is adequate, a direct

interface projection is sufficient. The extent and manner in which the right

mesh needs to be projected is similar to that for the left mesh as described

in Section 6.3.2.
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6.3.4 Information Exchange between Meshes

The key issue concerning the exchange of information between meshes re-

mains unaddressed. This section examines possible approaches to this topic

and discusses the relative ease and difficulty in the implementation of several

of these methods.

6.3.4.1 Conservative Methods

As mentioned in Chapter 5, methods which guarantee the conservation of

fluxes across interfaces are attractive on account of their proven ability to

capture the position of shocks and discontinuities correctly. It was also noted,

however, that these methods are amenable to computer implementation only

for two-dimensional structured grids. It is very hard, if not impossible, to de-

velop an effective implementation for two-dimensional unstructured or three-

dimensional meshes. This section examines potential difficulties involved in

developing a conservative method for non-matching unstructured meshes.

It should be remembered that even for conservative methods, it is

essential to overlap meshes to correctly compute fluxes and gradients at the

interface as mentioned in Section 6.2.2. To ensure conservation, it is essential

to balance fluxes between finite-volume cells of the projecting mesh and the

finite-volume cells into which the mesh overlaps.

One way to do this is to try to generate the meshes in such a way

that boundaries between cells of the projecting mesh and the overlapped

mesh are aligned in the overlap region and continue to remain aligned even

after relative motion between meshes, as is done in the method of Rai and

co-workers described in Section 5.3.4.1. This alignment is, in general, very

hard to achieve for unstructured triangular meshes.
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If cells cannot be aligned, then there are a numberof options, similar

to those presented in Sections 5.3.4.2and 5.3.4.3. Each of these requires

the precise determination of the manner in which cells overlap each other.

This is very hard to implement and computationally expensivefor the spatial

discretization employedin the presentfluid solver,becauseeachfinite-volume

cell is an arbitrary shaped polygon with the number of polygon vertices

generally changing from cell to cell.

On account of these implementational difficulties, it was decided to

follow a non-conservative approach in which exact conservation is not speci-

fied a priori. Conservation follows in the limit of mesh refinement, provided

that the consistency requirement is satisfied on the interface and in the region

of overlap.

6.3.4.2 Non-Conservative Methods

Non-conservative methods in CFD were discussed in detail in Chapter 5. In

these methods, information exchange occurs by the interpolation of conserved

variables from one mesh to another. As the process of variable interpolation

does not ensure that fluxes are balanced, conservation is not strictly enforced.

However, as mentioned in Section 5.3.6, the error in conservation on

account of non-conservative interpolation depends crucially on the interpo-

lation procedure used and can be greatly reduced by choosing a higher order

method. In the present method, the second-order accurate mortar element

method (Section 5.4) is used for this purpose.
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6.4 SUM : A Method for Slipping Unstructured Meshes

This section describes in detail the method developed during the course of

this research, SUM, paying close attention to the following issues :

1. The implementation of optimal overlap between meshes,

2. The enforcement of continuity at the mesh interface, and

3. The exchange of information between meshes either by linear inter-

polation or the mortar element method.

6.4.1 Implementation of Mesh Overlaps

The present implementation of SUM can handle two non-matching meshes

separated at an interface which is aligned with the y-axis. The mesh to the

left of the interface is referred to as the left mesh and the one to the right

as the right mesh. As described in Section 6.3.2, the left mesh projects two

levels onto the right mesh, and the right mesh one level onto the left one.

A simple mesh overlapping pre-processor is implemented which per-

forms an automatic optimal mesh overlap. The extent of overlap is deter-

mined by considering the minimum and maximum distances of mesh nodes

connected to the mesh interface for each level of extension, as shown in

(1) _(1)Figure 6.9. In this figure, 6rnin and max are the minimum and maximum

distances of points directly connected to points on the mesh interface from

(2) (_(2)the mesh interface, whereas 6,hi, and ,_a= are the distances of points con-

nected through one other point to the mesh interface. The extent of mesh

overlap for each level, 6(1) and 6(2) is then determined by

£(1) X(1)

6(1) = _mi- +vm*=
2

(2) d2)_
6(2) = 6,nin + o,,ta_

2

i00
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Figure 6.9 : Implementation of Mesh Overlaps

6.4.2 Projection of Variables

To implement the interface continuity requirements discussed in Section 6.3.3,

the values of conserved variables at the right mesh interface nodes are ob-

tained from the values at the left mesh interface nodes. To update the flow

variables at the left interface nodes, the left mesh is projected two levels deep

onto the right mesh. Furthermore, to retain second-order accuracy, the right

mesh is extended one level deep onto the left. The extension is performed

using the algorithm given in the previous subsection.

In Figure 6.10, triangles of the left and right meshes are indicated by

dashed lines. Projecting meshes are shown using solid lines. Lines 1, 2, 3

and 4, on the nodes of which projection of variables is required, are defined

as follows :

1. Line 1 is the actual interface between the two meshes. It is used to
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enforce continuity by projecting the values of variables from the left

interface mesh points to the right as pointed out in Section 6.3.3.

In addition to enforcing continuity at the interface, line 1 supplies

artificial boundary conditions for the right mesh in accordance with

equation (5.6).

Lines 2 and 3 are formed by extending the left mesh into the right

mesh. Variables on line 2 and 3 are used to supply the artificial

boundary conditions for the left mesh.

Line 4 results by the overlap of the right mesh into the left mesh.

Variables on line 4 supply artificial boundary conditions for the right

mesh.

These mesh projection lines will be referred to as lines 1, 2, 3 and 4 in the

subsequent discussion.

Values of variables can be obtained at these points either by lin-

ear interpolation (henceforth referred to as SUM/LI) or by using a higher-

order projection scheme based on the mortar method (SUM/MP standing

for SUM/Mortar Projection). Both methods were implemented and tested

in the present work.

6.4.2.1 SUM/LI : Linear Interpolation

In SUM/LI, linear interpolation is easily implemented by simply considering

the location of the point at which variables are to be obtained in the mesh

in which overlap occurs and assuming a linear variation of variables over

triangles.
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Figure 6.10 : Mesh Interfaces for Variable Projection

6.4.2.2 SUM/MP : Mortar Projection

The basic ideas behind the mortar method are described in Section 5.4. Ap-

plication of the mortar method requires the specification of a master interface

on which the values of variables are regarded as known. In SUM/MP, the

master interface is constructed by considering the intersections of the pro-

jecting mesh with lines of the mesh into which overlap occurs as indicated

in Figure 6.11.

In this figure, dashed lines represent lines of the projecting mesh,

whereas lines of the mesh into which overlap occurs are represented by solid

lines. Nodes of the projecting mesh where values of variables are sought are

indicated by squares (which form the slave interface) and intersection points

between the lines of the two meshes are shown by circles (which form the
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Figure 6.11 : Construction of Master Interfaces for the Mortar
Method

master interface).

Values of variables at points belonging to the master interface can be

obtained by assuming a linear distribution of variables over each triangle of

the mesh into which overlap occurs. Based on these values, all information

required for the construction of B1 (Section 5.4.3.2) is available and it can

be computed. B2 (Section 5.4.3.1) is assembled by knowing the co-ordinates

of points on the slave interface. Once B1 and B2 are available, values of vari-

ables on the slave interface can be easily computed by solving the resulting

tridiagonal system of equations as described in Section 5.4.3. This process is

applied on lines 2-4. For line 1, the master interface is constructed directly

from the interface points of the left mesh.

At first glance, the non-symmetric way in which the meshes overlap
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may give the impression that the left meshgets more preference than the

right mesh. However, it shouldbe noted that eachmeshdependsequally on

the other to get information usedto prescribeartificial boundary conditions.

The left meshdependson the right meshto prescribeartificial bound-

ary conditions on lines 2 and 3, whereasthe right meshdependson the left

mesh for artificial boundary conditions on lines 1 and 4. Thus, line 1 can be

viewed as an extension of the right meshonto the left mesh. However, in-

steadof projecting onto the left mesh,it coincideswith the physical interface

between the two meshes.This servesdual purpose : enforcing continuity at

the interface and providing artificial boundary conditions for the right mesh.

This completesthe description of the method to project variables at

points belonging to the projecting meshesand at the interface between the

non-matching meshes.The following section describesthe incorporation of

this methodology into a time-stepping algorithm.

6.4.3 An Algorithmic Description of SUM

At present, SUM accepts two non-matching meshes which are pre-processed

following the procedure outlined in Section 6.4.1. This section describes in

further detail the steps devised to handle non-matching unstructured meshes

in an algorithmic fashion. The description focuses on aspects particular to

the treatment of non-matching meshes. Implementation details standard to

the f-mite-volume fluid solver described in Chapter 4, such as the computation

of cell areas and boundary normals, incorporation of the geometric conser-

vation law into the Pdemann solver, and treatment of boundary conditions

are omitted for brevity.
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6.4.3.1 Step 1 : Initialization

Initial conditions to the problem being solved are provided either by starting

from a uniform flow solution or a pre-computed solution which is used for

the restart option. Several other initializations for particular problems (such

as for the shock tube problem) are also possible.

Flow is initialized by prescribing the values of the conserved variables

at all mesh points. Values of pressure at each node are obtained from

p = (_- I) (E- lp,,U,, 2) (6.3)

This gives knowledge of the flow field over the entire computational domain.

In addition to the initialization of flow variables, a list of 'candidate'

segments belonging to the overlapped mesh is prepared during initialization

to test for intersections with each line of the projecting mesh. This is required

for the construction of the master interface as described in Section 6.4.2.2.

Referring to Figure 6.12, if sliding motions are restricted to take place along

the y-axis, segments of line AA' of the projecting mesh will intersect only

those segments of the overlapped mesh indicated by the thicker lines. This

optimizes the determination of segment intersections. If a stationary problem

(that which does not involve moving meshes) is to be solved, all the segment

intersections are computed and interpolation coefficients stored for reuse.

6.4.3.2 Step 2 : Mesh Motion and Geometrical Update

At each time-step, meshes undergo rigid-body displacements with a user-

prescribed velocity. In addition to the updating of the co-ordinates of nodes,

computation of mesh velocities and recomputation of cell normals, intersec-

tions of segments of the projecting mesh with those of the overlapped mesh

must be computed at each step.
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Figure 6.12 : Candidates for Segment Intersection

A point to note here is the inclusion of the effects of periodic bound-

ary conditions, if they appear. Their treatment is illustrated in the rotor-

stator benchmark problem considered in Chapter 7. A model configuration

for rotor-stator interaction simulation is shown in Figure 6.13. Meshes gen-

erated around the two airfoils are separated at the interface indicated by

the bold line. The left airfoil represents the rotor and moves downward as

computations proceed. For each airfoil, dashed lines indicate lines of the cor-

responding projecting mesh. For clarity, only one line of projection is shown

for each mesh. Periodic boundary conditions are imposed on the upper and

lower boundaries of the mesh around each airfoil.

Let the position of the rotor airfoil be that as shown in the lower

part of Figure 6.I3. In this state, values of variables are required along line

B1B3B2. Note that on account of periodicity, flow at B2 is the same as that
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Figure 6.13 : Construction of Master Interfaces with Periodic

Boundary Conditions

at B1. However, no mesh is available to the right of the rotor airfoil in this

configuration. Taking periodicity into consideration, flow variables can be

obtained at BB from the original configuration, where B3 lies on the lower

boundary of the rear airfoil. Thus, the master interface on BzB3B2 can be

constructed by using information from Bz B3 in the original configuration for

BzB3 in the new configuration, and that from B4Bz in the original configura-

tion for B3B2 in the new configuration. Similarly, information along Az AzA2

for the rear airfoil can be obtained from A3A4 in the new configuration for

AzA2 and A4As for AzA3.

Co-ordinates of intersection points are obtained for each segment
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which enables the determination of interpolation coefficients. The list of

nodes(node numbersof the end points of segmentsof the overlapped mesh

which intersect a segmentof the projecting mesh) from which interpolation

occurs and the interpolation coefficientsare stored for each intersection of

segments.This processwill give the co-ordinatesof the points indicated by

circles in Figure 6.11. Note that for fine 1, segmentintersections do not

have to be computedbecausethe interface nodesof the left mesh themselves

provide the master interface.

Once segment intersections are determined, Step 3 calculations de-

scribed in the next subsectionare executedat each station of the Runge-

Kutta time-stepping procedure.

6.4.3.3 Step 3 : Construction of the Master Interface

The next step in the algorithm is to determine the values of conserved vari-

ables at points forming the master interface, the co-ordinates of which are

obtained in Step 2.

This is implemented knowing the values of conserved variables at the

end points of the segment of the overlapped mesh, which is intersected by the

segment of the projecting mesh and the interpolation coefficients. Thus, if

Wl and W2 are the values of conserved variables at the segment end-points,

and _1 and _2 are the interpolation coefficients, values of conserved variables

at the corresponding point on the master interface, Win, are obtained by

Wm = _lWx + (_W2

Repeating this process over all points on lines 2, 3 and 4 of Figure 6.10,

enables the construction of master interfaces along these lines. These are

the values used to supply the artificial boundary conditions discussed in

Section 6.4.2.
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6.4.3.4 Step 4 : Information Exchange between Meshes

Once the master interfaces are constructed as in Step 3 above, information

is exchanged between meshes at lines 2, 3 and 4. This can be done either

by linear interpolation (SUM/LI) or via projection using the mortar element

method (SUM/MP).

Linear interpolation is performed by considering the location of slave

points, indicated by squares in Figure 6.11, within the corresponding master

interface line. Once the location is determined, values of variables at the

slave points are obtained by linear interpolation of the values of variables

from the end-points of segments of the master interface.

Mortar projection is harder to implement. It is carried out by follow-

ing the general technique of Section 5.4, which is specialized for this problem

as follows :

1. Knowing the co-ordinates of points on the slave interfaces, construct

the B2 matrix as described in Section 5.4.3.1 for each slave interface.

2. From the co-ordinates of the master points and the values of conserved

variables at these points obtained in Step 3, construct the B1 matrix

for each master interface.

3. Having computed both B1 and B2 for lines 2, 3 and 4 of Figure 6.11,

values of conserved variables at points of the projecting mesh are

obtained by equating B2 = El. Solution of the tridiagonal system of

(5.13) gives the required values.

Once the values of conserved variables are known, pressure values at each

point of the projecting mesh are updated following (6.3).

At this juncture, values of all variables at all points of each mesh are

known at the current step of the Runge-Kutta iteration. Thus each mesh can
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be consideredseparately for the computation of fluxes, which is described

next.

6.4.3.5 Step 5 : Flux and Gradient Computation

Because the values of conserved variables are known at all points of each

mesh, the process of computing fluxes and gradients is the same as that for

a single mesh computation as described in Sections 4.1.3.3 and 4.1.3.4. That

is, the convective fluxes through the cell boundary along each mesh segment

are approximated by

fo . = _(Wi, W),_ij,crij)

Ci(t) jeK(i)

where the integral of :_c(W, x'). _ over the boundary of cell around node i,

Ci, given by OCi(t) at time t, denotes the convective flux through OCi(t),

K(i) is the set of nodes of the triangular mesh connected to node i, Wi and

Wj are the conserved variables at nodes i and j, nij is the integral of the cell

normal over OCi(t) and aii is a term for the inclusion of the effects of the

geometrical conservation law as defined in Section 4.1.3.3. 0, in this case

denotes a 'generalized' flux which can be either Roe's approximation of the

convective flux alone or can also include the Steger-Warming flux at far-field

boundaries.

Fluxes at points of the projecting mesh and for interface points of the

right mesh are set to be zero since values of variables are not updated at

those points.
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6.4.3.6 Step 6 : Time Integration

Once fluxes are computed at the end of Step 5, the following semi-discretized

equation is obtained :

dW

d--T + ¢(W) = 0 (6.4)

In (6.4), ¢ represents the computed fluxes and encapsulates other details

like the imposition of boundary conditions and treatment to include stipu-

lations of the geometric conservation law. The Runge-Kutta algorithm used

to numerically integrate (6.4) can be summarized as follows :

W(0) = W n

W (k) = W (0)

Wn+ 1 = W (3)

4 - k @(W(k-1)) k = 1,2,3

In the above representation, the superscript (k) denotes the k th step

of the Runge-Kutta algorithm whereas n is the n th time-step.

6.4.3.7 Step 7 : Enforcement of Interface Continuity

At the end of each Runge-Kutta step, conserved variables on the interface

of the left mesh (line 1) are projected onto the interface nodes for the right

mesh, in order to enforce continuity at the interface as discussed in Sect-

ion 6.3.3. This, again, can be done either by linear interpolation or using

mortar projection, as for lines 2, 3, and 4 described earlier. However, no

separate construction of the master interface is required in this case because

interface points of the left mesh themselves form the master interface.

This concludes the algorithmic description of SUM. A schematic rep-

resentation of the algorithm is given in the box in Figure 6.14.
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Initialization

• initialize flow variables.

• pre-processsegmentintersections.

Start time loop.

• move the meshesand compute segmentintersections.

• start Runge-Kutta integration loop.

- interpolate master variableson fines2, 3, and 4.

- project variables on lines 2, 3 and 4.

- compute gradients and fluxes for separatelyfor each

individual mesh.

- perform a Runge-Kutta integration step.

- project variableson line 1 to enforcecontinuity at the

interface.

• end Runge-Kutta integration loop.

End time loop.

Figure 6.14 : SchematicRepresentationof the SUM Algorithm

6.5 Analysis of Conservation Error

Details about SUM and its algorithm were given in Section 6.4. The primary

requirement on any scheme for non-matching meshes is its ability to conserve

fluxes between meshes. Since flux conservation is not imposed in SUM a

priori, the performance of SUM with regard to global conservation error is

assessed here. This gives a quick picture of its its applicability to problems

in CFD. For this purpose, a simple numerical experiment was performed.

The aim of this experiment is merely to analyze SUM for conservation. The
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results of a more extensive set of benchmark experiments are presented in

Chapter 7.

6.5.1 Experimental Procedure

A simple but effective way of quantifying the conservation error of a non-

matching scheme is to measure the flux imbalance across the mesh interface

at steady state. This follows from the fact that flux over a closed volume

must vanish at steady state.

In Figure 6.15, dotted lines denote mesh triangles, the thin solid line

is the mesh interface, the bold solid line shows the cell interfaces through

which fluxes are computed to analyze the conservation error. Dashed lines

are the cell boundaries which are not considered in the present analysis.

Thus, the difference of fluxes (indicated by arrows) through lines AA' and

BB', normalized to the total flux through AA' will give an estimate of the

loss of accuracy in conservation for the numerical scheme.

For the present investigation, the problem of supersonic flow over a

ramp (Section 7.1) is used with varying degrees of mesh refinement on either

side of the mesh discontinuity seen in Figure 6.16. Let rtl be the number of

points on the mesh discontinuity to the left and n2 the same to the right.

Unstructured meshes are generated on each side of the discontinuity so that

mesh spacing on the boundaries of each mesh corresponds to nl for the left

mesh and rt2 for the right mesh. The simulation was run until the system

attained steady state within numerical tolerances.

6.5.2 Results and Conclusion

Table 6.1 shows the percentage imbalance in mass fluxes across the mesh

discontinuity for varying values of rtl and rt2 with both first and second
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Figure 6.16 : Mesh Model for Supersonic Flow over a Ramp
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order accuracy using linear interpolation (SUM/LI) and mortar projection

(SUM/MP) for variable transfer. The overall flux conservation error does not

exceed 3.3% and 1.6% for the first and second-order methods respectively.

For a constant ratio of nl/n2, the conservation error decreases as

both nx and n2 increase, i.e. the meshes are refined. Keeping a fixed value of

nl, the conservation error initially decreases to low value for the case where

nl - n2 and then increases as n2 is increased, i.e. the mesh on the right

is finer than that on the left. However, a drop in error occurs when n2 is

further increased. In most cases, better conservation is achieved when the

mortar method is used for projection.

The principal conclusion to be drawn from these results is that for

sufficiently refined meshes with similar degrees of refinement on each side of

the interface, high accuracy in flux conservation can be achieved with the

present method. This makes the method particularly suitable for CFD appli-

cations such as rotor-stator interaction where meshes have to be sufficiently

and almost equally refined on each side of the mesh discontinuity. The use of

the mortar method, however, has not significantly reduced the conservation

error at the interface as seen in Table 6.1. A similar level of accuracy is

achieved if the more inexpensive linear interpolation is used.

6.6 Summary

1. Requirements for computing flows with non-matching unstructured

meshes using the finite-volume spatial discretization employed in the

present fluid solver are reviewed.

2. An attempt made to develop a non-overlapping, flux conservative me-

thod is described and the reasons for its non-applicability explained.
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Table 6.1 : Percentage Error in Conservation for the Ramp

Problem

Accuracy: First Order

24, 20

SUM/LI ISUM/MP_I, n2

12, 10 3.33% 2.93% 1.29%

1.77% 1.24%1.84%

0.66%48, 40 0.64%

Second Order

SUM/LI SUM/MP

0.44% 0.38%

31, 16 1.22% 0.92% 1.96% 1.56%

25 0.51% 0.57% 0.19%31,

31, 31 0.66% 0.64% 9.51xlO-a%

31, 37 0.12% 0.17% 0.14% 0.29%

31, 46 0'.12% 0.17% 0.11% 0.19%

The need to overlap meshes, both for conservative and non-conserva-

tive methods is emphasized.

3. Technical aspects pertaining to overlapping schemes for unstructured

meshes, such as the extent of mesh overlap and the enforcement of

continuity at the mesh interface, are put forth.

4. Consistency difficulties in achieving flux conservation are brought out,

thus giving reasons for using non-conservative methods.

5. The method developed during this research, SUM (Slipping Unstruc-

tured Meshes) is described in detail, and its ability to conserve fluxes

assessed.

6. The interface conservation test shows that although the mortar el-

ement method allows efficient and accurate transfer of variables be-

tween meshes, its use does not give much improvement over the linear

interpolation method as regards to interface flux conservation.
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Chapter 7

Results

Several numerical experiments have been performed to assessthe method de-

veloped, SUM. This chapter describesthe detailsof these experiments, which

includes the motivation for the problems being solved,problem physics,mesh

generation, detailsof solution method, the resultsobtained and the conclu-

sions that could be drawn from these results.

As mentioned in Chapter 5, a key measure of success or acceptability

of SUM isthe abilityto allow the smooth and undisturbed passage of shocks

through mesh discontinuities.An estimate of the flux-conserving abilityof

SUM isgiven in Section 6.5. This chapter reports resultsfrom simulations

performed on standard benchmark problems for which analytical solutions

are available. In addition, as a representativeof rotor-statorinteraction,a

more realisticproblem involving the relativemotion between two successive

airfoilsistreated. In allbut one of the experiments performed, SUM/MP is

used.

7.1 Supersonic Flow Over a Ramp

Prior to testing SUM on unsteady problems, it is used on a simple two

dimensional problem commonly found in literature on compressible flow,

namely that of a supersonic flow over a ramp.
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Figure 7.1 : Attached Oblique Shock for Supersonic Flow over a

Ramp

7.1.1 Problem Physics

Consider a uniform supersonic flow bounded on one side by a wall as shown in

Figure 7.1. At point A, the wall is inclined upwards into the flow by an angle

6. On account of the slip condition imposed on the wall boundary, flow will

have to be parallel to the wall both upstream and downstream of point A.

The result will be a sudden change in the direction of flow downstream of

point A leading to the creation of an oblique shock as shown in Figure 7.1.

This shock is attached to the wall at point A (the point of deflection) and

hence referred to as an attached oblique shock.

It can be shown [4, 33], that if the angle of inclination of the wall,

8, is larger than an angle gmax, which depends upon the freestream Mach

number, then the resulting shock will no longer be attached and oblique as

in Figure 7.1, but will have a curved shape such that it is normal to the wall

at the point of contact. Also, the shock will no longer be attached to the

wall at point A but will be attached somewhere upstream. Such a shock is

called a detached bow shock, as shown in Figure 7.2.
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Figure 7.2 : Detached Bow Shock for Supersonic Flow over a Ramp

7.1.2 Motivation

The goal of this exercise is to see if the current approach to patched mesh

computations could capture the bow shock correctly without any distortions

near the individual mesh boundaries for supersonic steady state problems.

7.1.3 Modeling and Mesh Generation

For simplicity of mesh generation, the patched mesh for this simulation is

composed of two algebraically interpolated meshes as shown in Figure 7.3.

The angle of inclination is 45 ° and the freestream Mach number is 2.5. This is

greater than the maximum angle 0max for the prescribed Mach number and

hence would result in the creation of a detached bow shock as mentioned

before.

7.1.4 Results and Discussion

Figure 7.4 shows the pressure contours for the current simulation at steady

state. The bow shock has been captured well and it can be seen that the

pressure contours are smooth and continuous across the mesh discontinuity,
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Figure 7.3 : Mesh Model for Supersonic Flow over a Ramp

indicating that the current scheme performs satisfactorily for steady-state

problems.

7.2 Transonic Flow through a Channel with a Bump

To assess the ability of SUM to simulate transonic flows, it is tested on the

case of transonic flow through a channel with a bump.

7.2.1 Problem Physics

Consider a uniform subsonic flow from left to right through a channel with

a bump as seen in Figure 7.5. This situation is similar to that of transonic

flow over an airfoil as described in [5, 33]. As the flow goes over the airfoil,

it is accelerated as increase in the thickness of the airfoil leads to a decrease

in the area of cross-section. It is seen that for uniform flows with Mach
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Figure 7.4 : Pressure Contours for Supersonic Flow Over a Ramp

numbers Moo less than a critical Mach number Mcr, the flow remains sub-

sonic throughout. If Moo > Mcr, the flow gradually becomes supersonic and

finally leads to the creation of a shock as seen in Figure 7.5.
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Figure 7.5 : Transonic Flow through a Channel with a Bump
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7.2.2 Motivation

The primary motivation to analyzethis problem is to test the ability of SUM

to simulate transonic flows, irrespective of flow direction.

7.2.3 Modeling and Mesh Generation

A schematic representation of the model used for mesh generation is shown in

Figure 7.6. Slipping boundary conditions are imposed on the top and bottom

walls of the channel and inflow and outflow boundary conditions are specified

on the left and right boundaries of the mesh respectively. Mesh generation

was parameterized by the length of the arc I, and its maximum thickness

t expressed as a fraction of l. In the simulations reported here, l - 1 and

t - 0.1. Experiments were performed for two types of mesh discontinuities :

1. the mesh discontinuity is parallel to the direction of flow,

2. the mesh discontinuity is perpendicular to the direction of flow.

m

_p BC

_ipBC

• !

0

sapBc

T
.... ! , l ..

Figure 7.6 : Mesh Model for Transonic Flow through a Channel with

a Bump

7.2.4 Results and Discussions

Figures 7.7 and 7.8 show the contours of the Mach number at steady state

for flow going from left to right and right to left respectively for a single

mesh computation.
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Figure 7.7 : Mach Number Contours for Transonic Flow through a

Channel with a Bump -- Flow from Left to Right using
a Single Mesh

Figure 7.8 :Mach Number Contours for Transonic Flow through a

Channel with a Bump -- Flow from Right to Left using

a Single Mesh

Figure 7.9 shows the Mach contours obtained from using two non-matching

meshes with a vertical discontinuity for flow going from left to right, whereas

Figure 7.10 indicates the same for flow from right to left. Figure 7.11 shows

the Mach contours obtained on a mesh with a horizontal discontinuity, with

flow from left to right.

In addition to the contour plots, the pressure coefficient C v defined

by

p - Poo

c,,-  pllU ll

is also plotted for points along the bottom wall of the channel for each case

in Figures 7.12, 7.13 and 7.14 respectively.
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Figure 7.9 :Mach Number Contours for Transonic Flow through

a Channel with a Bump -- Flow from Left to Right

using Two Non-matching Meshes with a Vertical

Discontinuity

Figure 7.10 : Mach Number Contours for Transonic Flow through

a Channel with a Bump -- Flow from Right to Left

using Two Non-matching Meshes with a Vertical

Discontinuity

Figure 7. II : Mach Number Contours for Transonic Flow through

a Channel with a Bump -- Flow from Left to Right

using Two Non-matching Meshes with a Horizontal

Discontinuity
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From the figures, it can be concluded that results obtained from using

non-matching meshes agree well with those obtained from single mesh cal-

culations. The Mach contours are smooth and continuous across the mesh

interfaces and both the magnitude and position of the shock are captured

correctly in each case. The method developed is able to compute flows accu-

rately, irrespective of the direction and subsonic/supersonic nature of flow.
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Figure 7.12 : Comparison of Cp Profiles on the Lower Wall of the

Channel for Flow from Left to Right using Two Non-

matching Meshes with a Vertical Discontinuity

7.3 The Shock Tube Problem

Once satisfactory results were obtained for the steady-state problems in Sec-

tions 7.1 and 7.2, SUM was tested on an classical unsteady problem to inves-

tigate the propagation of shocks and discontinuities across mesh boundaries

with time. For this purpose, the shock tube problem proposed by Sod [58]

was chosen.
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7.3.1 Problem Physics

The shock tube problem is designed to trace the development of shocks and

other discontinuities from a contact discontinuity in the initial state for the

Euler equations given by (4.2).

The shock tube is a 1 × 1 tube (in physical dimensions), closed at

both ends with a diaphragm separating a region of high-pressure (p4) gas on

the left from a region of low-pressure (pl) gas on the right. This setup and

initial state is illustrated in Figure 7.15.

The diaphragm is broken. A shock wave then propagates into sect-

ion 1 while an expansion wave propagates into section 4. This behavior is

illustrated in Figure 7.16. As the normal shock wave propagates to the right,

it increases the pressure behind it in region 2 and induces a mass motion in

that region. The contact surface (interface between the region of high and

low pressure) moves to the right with the same velocity as that of the mass

motion in region 2. The expansion wave propagates to the left, smoothly

and continuously decreasing the pressure in region 4 to the lower value P3

behind the expansion wave.

For simulations reported here, the following initial conditions are

used :

_4=Ul=O

P4 = 1.0 pl =0.1

P4 - 1.0 Pl = 0.125

An analytical solution is known in which the distribution of the pressure,

density and velocity is known as the function of the initial pressure ratio

(P4/Pl) and the position of a point in the shock tube with respect to time [4].
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Figure 7.15 : Initial State for the Shock Tube Problem
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Figure 7.16 : Flow in the Shock Tube after the Diaphragm is Broken
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7.3.2 Motivation -

The shock tube problem presents an opportunity to investigate the simulta-

neous propagation of a shock, a contact discontinuity and an expansion fan

in a simple computational setup. Because an analytical solution is available,

it is easier to assess the accuracy of any method. Consequently, this problem

is used often to test new techniques in computational fluid dynamics.

7.3.3 Modeling and Mesh Generation

The shock tube is modeled as 1 x 1 box in physical dimensions. The slip

boundary condition is imposed at the wall boundary. The patched mesh

in this case consists of 2 algebraically generated structured meshes with a

discontinuity in the meshes at the center of the tube as seen in Figure 7.17.

Sli SC

p

¢.)

m

_i

hi'

Slip BC

=-,
m

Qo

Figure 7.17 : Mesh Model for the Shock Tube Problem
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Two configurations were tested : (a) One in which the pressure dis-

continuity is normal to the mesh discontinuity and, (b) one in which the

pressure discontinuity is parallel to the mesh discontinuity. Case (a) tests

the ability of the solver to propagate shocks and discontinuities smoothly

while case (b) assesses the accuracy of the projection scheme.

7.3.4 Results and Discussion

Figure 7.18 shows the density distribution for a patched mesh computation, a

single mesh computation and the analytical solution for case (a). From this it

is evident that values for single and patched mesh computations match closely

which in turn are in fair agreement with the exact solution. This illustrates

the ability of the solver to capture shocks and discontinuities accurately.

Figures 7.19, 7.20 and 7.21 present results obtained for case (b). From

Figures 7.19 and 7.20 it is seen that results on either side of the mesh dis-

continuity match well with the exact solution. Figure 7.21 verifies that the

used of the mortar method results in accurate transfer of information from

one mesh to another.

7.4 Idealized Rotor-Stator Calculation

The motivation for current research to develop a method for patched un-

structured mesh computation was to enable it to handle slipping meshes as

in the case of rotor-stator interaction. This section details the calculations

performed on a simple, idealized stage comprising a rotor and a stator. These

are similar to the simulations performed in [44] and [52].
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7.4.1 Mesh Generation and Modeling

As shown in Figure 7.22, the rotor and stator blades were simplified and

represented in two-dimensions as airfoils made of two circular arcs. The

following parameters were used in mesh generation :

1.

2.

I. : The chord length of the airfoil.

Is : The spacing between the tail of the fore airfoil and the head of

the aft airfoil.

3. t= : Maximum airfoil thickness.

4. tt and It : Extension of the fluid mesh upstream of the fore airfoil and

downstream of the aft airfoil.

5. Ic : Distance of separation between two airfoils in the circumferential

direction.

t,

i
i i
, |

•--o.s_, "i" i. _ i,----
0

Figure 7.22 : Mesh Generation Parameters for the Idealized Rotor-
Stator Calculation

In order to simulate interaction between a rotor and a stator, the fore airfoil

is moved downward with a prescribed velocity.

Two models were used in the calculations :

.1. Case (a) : This corresponds approximately to the simulation per-
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formed in [52] and has the following parameters :

la = le = 1.0

It = It = 0.25

l_ = 0.50

ta = 0.06

Case (b) : This is similar to the calculation performed in [44] and

has the following parameters :

l,_ = lc = 1.0

It = It = 0.25

ts = 0.20

t_ = 0.06

Thus, the only difference between case (a) and case (b) is the reduced spac-

ing between the airfoils in the axial direction. This would highlight the

pronounced effect this spacing has on overall engine performance.

In each case, solutions were obtained with both first- and second-order

accuracy in space. A simulation consisted of two parts : (i) obtaining the

steady state solution for flow around the stationary airfoil from an uniform

Mach flow of M = 1.5, and (2) computation of the unsteady response by

the downward motion of the fore airfoil till the desired end of computations.

In both cases, the airfoil is moved with a downward velocity of 0.1M with

respect to the uniform flow.
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7.4.2 Results and Discussion

Results with first order accuracy for cases (a) and (b) are compared with

those in [52] and [44], while those with second order accuracy are presented

to highlight benefits from increased accuracy.

The following general trends can be observed.

1. An intricate pattern of shocks and expansion fans is observed at steady

state. Oblique shocks are attached to the leading and trailing edges

of both the fore and aft airfoils and these are slightly weakened by

the expansion waves that emanate from the surfaces of the airfoils.

Figure 7.23 shows the pressure contours at steady state for

case (a) and these can be compared with Figures 7.24 and 7.41 for

results obtained with first and second order accuracy respectively. No

results are available at steady state for case (b), however, Figures 7.50

and 7.68 show the pressure contours at steady state by the current

method with first and second order accuracy respectively.

2. After the initial transients subside, the flow pattern becomes periodic

in time as evidenced by the pressure history at midchord on the lower

and upper surfaces of the aft airfoils in each case.

Figure 7.25 shows the pressure history at midchord on the lower

surface of the aft airfoil from [52] for case (a). These results can be

compared with Figures 7.26 and 7.42 which are obtained with first

and second order accuracy, respectively.

Figure 7.27 shows the pressure history at midchord on the up-

per surface of the aft airfoil from [52] for case (a). These results can

be compared with Figures 7.28 and 7.43 which are obtained with first

and second order accuracy, respectively.
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In either case, there is a phase shift between the pressure his-

tory at midchord on the lower and upper surfaces of the airfoil. Also,

the mean pressure value on the upper surface is higher than at steady

state while that on the lower surface is lower than the steady state

pressure.

The downward motion of the forward airfoil results in an effective

angle of attack which in turn results in the creation of an attached

oblique shock at the leading edge on the lower side and a weak ex-

pansion fan on the upper side at the leading edge of the first airfoil.

Another attached oblique shock is also evident at the trailing edge of

the fore airfoil. At the start of a cycle, the shock associated with the

leading edge of the second airfoil is detached, and is seen impinging

on the surface of the adjacent airfoil.

There is an area of interaction between the trailing edge shock

of the first airfoil and the leading edge shock of the second. This area

of interaction moves downward as the first airfoil moves downward.

This causes the leading edge shock of the aft airfoil to attach and

detach itself periodically as is seen in the sequence of contour plots in

the subsequent pages. In the first three plots, each plot corresponding

to a fifth of a cycle, the process of attachment becomes evident. The

shock then starts to detach itself and finally returns to its initial state

of detachment at the end of the cycle.

Figures 7.29, 7.31, 7.33, 7.35, 7.37 and 7.39 show the pressure

contours at different stages of a cycle for case (a) from [52]. These can

be compared with Figures 7.30, 7.32, 7.34, 7.36, 7.38 and 7.40 which

are obtained with first order accuracy and Figures 7.44, 7.45, 7.46,

7.47, 7.48 and 7.49 which are obtained with second order accuracy.
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Figures 7.54, 7.56, 7.58, 7.60, 7.62 and 7.64 show the pressure

contours at different stages of a cycle for case (b) from [44]. These can

be compared with Figures 7.55, 7.57, 7.59, 7.61, 7.63 and 7.65 which

are obtained with first order accuracy and Figures 7.69, 7.70, 7.71,

7.72, 7.73 and 7.74 which axe obtained with second order accuracy.

7.4.2.1 Conclusions

The key observation to be made from these plots is that the contour lines

across the mesh discontinuity axe smooth and continuous. This validates

the ability of SUM to handle discontinuities correctly. In general, results

obtained with SUM match well with those available in literature. Also sig-

nificant is the fact that contour plots at the end of a cycle are almost exactly

identical to those at the end of a cycle, indicating SUM's temporal accuracy.

Calculations performed with second order accuracy show a wider vari-

ation in midchord pressures both on the upper and lower surfaces of the aft

airfoil. Shocks captured in this case axe sharper, and more cycles are needed

in order to subside the transients.

The effects of interaction between the fore and the aft airfoil become

more pronounced as the gap between these two airfoils is reduced. This is

corroborated by examining the corresponding contour plots at each stage of

the cycle for cases (a) and (b).

7.5 Summary

. SUM was tested on several benchmark problems to assess its ability

to accurately simulate flows having strong gradients with shocks and

discontinuities.
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2. It is observedthat SUM allowsthe smoothand undisturbed passageof

shocksand discontinuities acrossmeshboundaries, for both transonic

and supersonicflow, irrepsectiveof flow direction. Both the position

and the strength of shocksare captured satisfactorily.

3. Results obtained with SUM for the caseof rotor-stator interaction

which involvessimulation of flows with slipping mesheshighlight its

ability to handle complexflowson moving, non-matching meshes.
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Figure 7.23 : PressureContours at Steady-Statefor Case(a) from [52]

Figure 7.24 : Pressure Contours at Steady-State for Case (a) with

First Order Accuracy
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Figure 7.25 : Pressure History at Midchord on the Lower Surface of

the Aft Airfoil for Case (a) from [52]
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Figure 7.26 : Pressure History at Midchord on the Lower Surface of

the Aft Airfoil for Case (a) with First Order Accuracy
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Figure 7.27 : Pressure History at Midchord on the Upper Surface of

the Aft Airfoil for Case (a) from [52]
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Figure 7.28 : Pressure History at Midchord on the Upper Surface of

the Aft Airfoil for Case (a) with First Order Accuracy
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Figure 7.29 : PressureContours for Case(a) and the end of 4.0 cycles
from [52]

Figure 7.30 : PressureContours for Case (a) and the end of 4.0 cycles

with First Order Accuracy
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Figure 7.31 : Pressure Contours for Case (a) and the end of 4.2 cycles

fTom[52]

Figure 7.32 : Pressure Contours for Case (a) and the end of 4.2 cycles

with First Order Accuracy
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Figure 7.33 : PressureContours for Case(a) and the end of 4.4 cycles
from [52]

Figure 7.34 : PressureContours for Case(a) and the end of 4.4 cycles

with First Order Accuracy
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Figure 7.35 : Pressure Contours for Case (a) and the end of 4.6 cycles

from [52]

Figure 7.36 : Pressure Contours for Case (a) and the end of 4.6 cycles

with First Order Accuracy
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Figure 7.37 : PressureContoursfor Case(a) and the end of 4.8 cycles
from [52]

Figure 7.38 : Pressure Contours for Case (a) and the end of 4.8 cycles

with First Order Accuracy
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Figure 7.39 : PressureContoursfor Case(a) and the end of 5.0 cycles
from [52]

Figure 7.40 : PressureContoursfor Case(a) and the end of 5.0 cycles
with First Order Accuracy
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Figure 7.41 : PressureContours at Steady-Statefor Case(a) with
SecondOrder Accuracy
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Figure 7.42 : Pressure History at Midchord on the Lower Surface of

the Aft Airfoil for Case (a) with Second Order Accuracy

149



Pm_ Hklmy m I_kh_l on Ih* U_. _ d m,/m A_I

0.SS

0JS

i-
0.4

0.16

0.3 I i I i i

lO00 _ :3_QO 4000 5GGO
slim mp

Figure 7.43 : Pressure History at Midchord on the Upper Surface of

the Aft Airfoil for Case (a) with Second Order Accuracy

Figure 7.44 : Pressure Contours for Case (a) and the end of 5.0 cycles

with Second Order Accuracy
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Figure 7.45 : PressureContours for Case(a) and the end of 5.2 cycles
with SecondOrder Accuracy
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Figure 7.46 : Pressure Contours for Case (a) and the end of 5.4 cycles

with Second Order Accuracy
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Figure 7.47 : Pressure Contours for Case (a) and the end of 5.6 cycles

with Second Order Accuracy
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Figure 7.48 :Pressure Contours for Case (a) and the end of 5.8 cycles

with Second Order Accuracy
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Figure 7.49 : PressureContoursfor Case(a) and the end of 6.0 cycles

with Second Order Accuracy
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Figure 7.50 : Pressure Contours at Steady-State for Case (b) with

First Order Accuracy
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Figure 7.51 : Pressure History at Midchord on the Lower Surface of

the Aft Airfoil for Case (b) with First Order Accuracy
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Figure 7.52 : Pressure History at Midchord on the Upper Surface of

the Aft Airfoil for Case (b) from [44]
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Figure 7.53 : Pressure History at Midchord on the Upper Surface of
the Aft Airfoil for Case (b) with First Order Accuracy
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Figure 7.54 : PressureContoursfor Case(b) and the end of 4.0 cycles
from [44]

Figure 7.55 : Pressure Contours for Case (b) and the end of 5.0 cycles

with First Order Accuracy
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Figure 7.56 : PressureContoursfor Case(b) and the end of 4.2 cycles

from [44]

Figure 7.57 : Pressure Contours for Case (b) and the end of 5.2 cycles

with First Order Accuracy
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Figure 7.58 : PressureContours for Case(b) and the end of 4.4 cycles
from [44]

Figure 7.59 : Pressure Contours for Case (b) and the end of 5.4 cycles

with First Order Accuracy
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Figure 7.60 : PressureContoursfor Case(b) and the end of 4.6 cycles

from [44]
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Figure 7.61 : Pressure Contours for Case (b) and the end Of 5.6 cycles

with First Order Accuracy
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Figure 7.62 : PressureContours for Case(b) and the end of 4.8 cycles
from [44]
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Figure 7.63 : PressureContoursfor Case(b) and the end of 5.8 cycles
with First Order Accuracy
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Figure 7.64 : PressureContours for Case(b) and the end of 5.0 cycles
from [44]

Figure 7.65 : Pressure Contours for Case (b) and the end of 6.0 cycles

with First Order Accuracy
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Figure 7.66 : Pressure History at Midchord on the Lower Surface of

the Aft Airfoil for Case (b) with Second Order Accuracy
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Figure 7.67 : Pressure History at Midchord on the Upper Surface of

the Aft Airfoil for Case (b) with Second Order Accuracy
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Figure 7.68 : PressureContours at Steady-Statefor Case(b) with
SecondOrder Accuracy
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Figure 7.69 : PressureContours for Case(b) and the end of 6.0 cycles
with SecondOrder Accuracy
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Figure 7.70 : Pressure Contours for Case (b) and the end of 6.2 cycles

with Second Order Accuracy
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Figure 7.71 : PressureContoursfor Case(b) and the end of 6.4 cycles

with Second Order Accuracy
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Figure 7.72 : PressureContours for Case(b) and the end of 6.6 cycles
with SecondOrder Accuracy
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Figure 7.73 : Pressure Contours for Case (b) and the end of 6.8 cycles

with Second Order Accuracy
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Figure 7.74 : PressureContoursfor Case(b) and the end of 7.0 cycles
with SecondOrder Accuracy
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Chapter 8

Conclusion

The finaland concluding chapter of this dissertationreviews current work,

evaluates it by comparing and contrasting it with other related published

research and makes recommendations for future work.

8.1 Discussion and Review of Present Work

The fundamental motivation for the present research was the massively par-

allel three-dimensional aeroelastic analysis of aircraft engines using unstruc-

tured meshes for the fluid component and staggered methods. The realiza-

tion of this ambitious project was found to require additional work in several

modeling and methodology ingredients. One of these was selected for de-

tailed investigation, namely flow simulations on non-matching unstructured

meshes, with particular application to the analysis of rotor-stator interaction

phenomena in turbomachinery.

Several important factors need to be considered while developing such

a method. The two most significant ones are flux conservation and continu-

ity of physical variables. Flux conservation is essential to ensure that any

method converges to the single physically correct solution of a conservation

law, especially as regards the correct transmission and positioning of shocks
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and discontinuities. On the other hand, continuity at the mesh interface

is required so that artificial discontinuities do not arise at the interface on

account of the numerical approximation.

A number of flux conservative methods have been proposed and im-

plemented in the context of both rotor-stator interaction and domain de-

composition. However, these have been largely developed for structured

meshes with regular geometric patterns. Furthermore, these methods are

usually computationally intensive, requiring a considerable amount of geo-

metric computations to calculate volume weights which are needed to deter-

mine the manner in which fluxes are transferred at the mesh interface. It

has also been mentioned in the literature [49], that in some cases, attempts

to ensure flux conservation give rise to some forms of instability.

In addition to flux conservative methods, non-conservative methods

have been quite popular, particularly in the field of domain decomposition

with the use of overset or Chimera grids. The main drawback of these meth-

ods that is repeatedly brought out is their inability to capture shocks and dis-

continuities correctly and failure to converge to the correct solutions. While

these claims are true to some extent, it is felt that in many cases in which

these results were reported, proper precaution was not exercised and faults

lay more in the way in which these methods were used than in the way

in which they were designed. Also, some authors [13] have suggested that

discrete local conservation with continuity is sufficient and complete global

conservation is not essential to ensure the success or validity of a method.

In the present work, both non-overlapping and overlapping methods

were investigated. It was observed that non-overlapping methods gave incor-

rect results on account of their being inconsistent with the adopted spatial

discretization. This mandates the use of an overlapping scheme.
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Flux conserving overlapping schemes generally involve the determina-

tion of volume weights which are required for the exchange of information

between meshes. For the spatial discretization that the current fluid solver

uses, determination of these volume weights would have meant either calcu-

lating the areas of intersection of finite-volume cells of the projecting mesh

and the overlapped mesh or the intersections between the edges of these

cells. Each of these procedures requires intricate programming efforts and

if implemented, would be computationally expensive because finite-volume

cells are, in general, irregular polygons with the number of edges and vertices

changing from cell to cell. Therefore, a non-conservative approach was fol-

lowed in which greater emphasis was laid on the satisfaction of the continuity

requirements and the transfer of variables from one mesh to another so that

discrete local conservation could be achieved.

The method developed, identified by the acronym SUM (standing

for Shpping Unstructured Meshes), uses optimally overlapping meshes to

exchange information and compute fluxes. Two projection schemes were im-

plemented in SUM, namely linear interpolation (SUM/LI) and the mortar

method (SUM/MP). It was felt that the way in which meshes were over-

lapped and the manner in which information was exchanged would result in

the creation of a robust method for use in applications of current interest.

8.2 Evaluation

The applicability of SUM has been demonstrated on several test problems in

Chapter 7. The numerical experiments indicate that this method is success-

ful in capturing and locating shocks and discontinuities correctly for both

supersonic and transonic steady-state and unsteady flow simulations. It is
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also applied to a simplified rotor-stator configuration. The results match

fairly well with those from publishedsources.

From the results presentedin Chapter 7, it can be inferred that SUM

can be used in confidence to analyze flows which have strong gradients, or

discontinuities or both. In Chapter 6, it is seen that while exact global

conservation is not imposed, discrete conservation is achieved locally on each

mesh and the imbalances in fluxes reported globally are within an acceptable

range of tolerance. An interesting observation made is that the variant of

SUM with linear interpolation, SUM/LI achieves almost the same level of

flux conservation as its variant with mortar projection, SUM/MP.

The major drawback SUM is its reliance on mesh overlapping. Care

must be taken to ensure that this is properly done. However, in most cases,

this requirement merely stipulates that the mesh overlap should occur in such

a way that the mesh refinement in the region of overlap is compatible with

the mesh refinement in the non-overlapping region and that the individual

meshes, though not matched, are refined to approximately equal degrees.

This requirement is not overly restrictive as non-matching of meshes usually

occurs at critical locations (such as the interface between a rotor and a stator)

and meshes there would have to be sufficiently refined to adequately capture

flow properties.

SUM is computationally efficient and requires only the determination

of triangle segment intersections in the region of overlap. This search can be

optimized by choosing the mesh overlaps to satisfy certain constraints which

would depend upon the type of application. The transfer or exchange of

information between meshes imposes little overhead in computational costs

and results are obtained with almost the same efficiency as in case of single

mesh computations.
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SUM is fairly generaland can be tailored to suit a wide range of appli-

cations such as the motion of control surfaces on an aircraft wing and store

separation operations. In addition, it is also a candidate for non-conforming

domain decompositions in CFD. The latter would allow separate generation

of meshes with varying degree of refinement. This would be specially bene-

ficial for turbulence computations where narrow, flat cells are required near

the waU boundaries whereas coarser meshes are acceptable away from the

waU. It could also be used to 'glue' solutions obtained on structured and

unstructured meshes, which is again of interest in turbulence computations.

To carry the same idea further, a method similar to the one developed can

be used to link flow solutions obtained with methods of varying fidelity on

different portions of the physical domain, i.e., the simultaneous use of po-

tential, Euler, Navier-Stokes and turbulence flow solvers depending upon the

degree of refinement required in the solution, see Section 2.1.1.

To summarize, the following are the major accomplishments of the

present work :

1. First fully three dimensional aeroelastic simulation of an entire stage

of an aircraft engine.

2. First application of the mortar element method for Euler flows on

unstructured meshes with a finite-volume discretization.

3. First instance of flow computations being carried out on non-matching

finite-volume unstructured meshes with second order spatial accuracy.

Item (3) above is the most significant achievement of this research.
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8.3 Recommendations for Future Research

The in-depth research work has focused on a particular aspect of a prototype

of a more complete computational setup designed to analyze complicated

flows through realistic turbomachinery models. The following are the desired

additions and/or modifications that need to be made in order to take the

current method to that level of capability :

1. In some cases, it becomes essential to consider turbulent flows both in

turbomachinery applications such as rotor-stator interaction and also

other applications of interest like the motion of control surfaces and

store separation operations. Thus, the task of foremost importance

would be the extension of the current method to include viscous and

turbulence effects.

2. Interlinked with use of turbulence models would be the need to allow

for implicit time-stepping given the need to use highly resolved meshes

to capture turbulence effects. Of particular relevance to the current

method would be to perform the mortar projection in an implicit

manner.

3. The driving motivation for current work was the desire to perform

aeroelastic analysis of turbomachinery components. Steps that need

to be taken in this direction include the use of a mass-spring model

to move the mesh and the exchange of pressures and displacements

to and from the structural components, such as those mentioned in

Section 3.4.

4. It would also be of interest to extend the current method to allow

mesh interfaces to be oriented arbitrarily and the presence of multiple

mesh interfaces. Although this would not be necessary in rotor-stator
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interaction computations, it is useful in the linkage of solutions ob-

tained from various models discussed earlier.

5. SUM lends itself well to parallelization and that would be another area

where further efforts are needed. In the simplest scenario, two proces-

sors could be used in rotor-stator simulations, one for each stage. As

complexity in modeling increases more processors could be assigned.

In particular, the issues that need to be addressed are the way in

which the geometrical computations involved in the region of overlap

could be optimized and the parallelization of the mortar method.

6. Lastly, the current method with all the additions and modifications

mentioned above needs to be extended to 3-dimensions.

On a closing note, it is felt that this research provides a starting block

for further investigation and design of methods of this type used to merge

solutions obtained on separate computational domains. Applications of these

are many and in particular, it is hoped that this work is a step in the right

direction towards the unified multidisciplinary analysis of complete aircraft

engines.
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